• Title/Summary/Keyword: Linear program

Search Result 1,607, Processing Time 0.031 seconds

Biomechanical Analysis of a Bowling Swing (볼링 투구동작의 운동역학적 연구)

  • Lee, Hae-Myeong;Lee, Sang-Cheol;Lee, Hae-Dong
    • Korean Journal of Applied Biomechanics
    • /
    • v.16 no.3
    • /
    • pp.53-63
    • /
    • 2006
  • The general objective of this study was to investigate biomechanical characteristics of bowling swing using three-dimensional cinematography. This study focused specifically on movements of the upper body segments during a bowling swing. Eight elite female bowling players participated in this study. Subjects performed bowling swing and their performance was sampled at 60 frame/sec using two high-speed video cameras with a synchronizer. After digitizing images from two cameras, the two-dimensional coordinates were used to produce three-dimensional coordinates of the 12 body segments (20 joint reference makers). The obtained three-dimensional coordinates were fed to a custom-written kinematic and kinetic analyses program (LabView 6.1, National Instrument, Austin, TX, USA). The analyses determined the linear and angular kinematic variables of the body segments with which joint force and torque of the lower and upper trunks and the shoulder were estimated based on the Newton-Euler equations. It was found that during the bowling swing the peak linear velocities of the body segments were reached in sequence the trunk, the shoulder, the elbow, the wrist, and the bowl. This result indicates that linear momentum of the lower body and the trunk transmits to the arm segment during the bowling swing. The joint torques of the torso and the arm occurred almost simultaneously, indicating that bowling swing seem to be a push-like motion, rather than a proximal-distal sequence motion in which many of throwing motions are categorized. The ultimate objective of the bowling swing is to release a heavy-weight bowl with power and consistency. Therefore, the bowling swing observed in this study well agrees with that bowlers use the stepping to increase the linear velocity of the bowl, the simple pendulum system and the push-like segmental motion in the torso and the arm segment to enhance the power at the release of the bowl.

Similarity Analysis of Programs through Linear Regression of Code Distribution (코드 분포의 선형 회귀를 이용한 프로그램 유사성 분석)

  • Lim, Hyun-il
    • Journal of Digital Contents Society
    • /
    • v.19 no.7
    • /
    • pp.1357-1363
    • /
    • 2018
  • In addition to advances in information technology, machine learning approach is applied to a variety of applications, and is expanding to a variety of areas. In this paper, we propose a software analysis method that applies linear regression to analyse software similarity from the code distribution of the software. The characteristics of software can be expressed by instructions contained within the program, so the distribution information of instructions is used as learning data. In addition, a learning procedure with the learning data generates a linear regression model for software similarity analysis. The proposed method is evaluated with real world Java applications. The proposed method is expected to be used as a basic technique to determine similarity of software. It is also expected to be applied to various software analysis techniques through machine learning approaches.

Modeling of Displacement of Linear Roller Bearing Subjected to External Forces Considering LM Block Deformation (외부하중을 받는 선형 롤러베어링의 LM 블록 변형을 고려한 변위 모델링)

  • Kwon, Sun-Woong;Tong, Van-Canh;Hong, Seong-Wook
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.40 no.12
    • /
    • pp.1077-1085
    • /
    • 2016
  • Linear roller bearing (LRB) is an important mechanical element that is widely used in precise positioning systems that are subjected to large loads. This paper presents a new model for estimating the displacement of an LRB subjected to external forces. For this purpose, assuming that the linear motion block (LM block) is rigid, the equilibrium conditions for the LRB were obtained by solving the equilibrium equations of the rollers and the rigid LM block using the iterative Newton-Raphson method. The contact loads between the rollers and raceways were determined considering the profiled rollers. Then, the structural deformations of the LM block, subjected to the contact loads from the rigid LM block model, were computed using a finite element model for the LM block. The displacements of the LRB were then determined by superposition of the rigid LM block displacements on the induced displacements due to the structural deformations of the LM block. The proposed method was verified through comparison with a program by the bearing manufacturer.

Vibration analysis and optimization of functionally graded carbon nanotube reinforced doubly-curved shallow shells

  • Hammou, Zakia;Guezzen, Zakia;Zradni, Fatima Z.;Sereir, Zouaoui;Tounsi, Abdelouahed;Hammou, Yamna
    • Steel and Composite Structures
    • /
    • v.44 no.2
    • /
    • pp.155-169
    • /
    • 2022
  • In the present paper an analytical model was developed to study the non-linear vibrations of Functionally Graded Carbon Nanotube (FG-CNT) reinforced doubly-curved shallow shells using the Multiple Scales Method (MSM). The nonlinear partial differential equations of motion are based on the FGM shallow shell hypothesis, the non-linear geometric Von-Karman relationships, and the Galerkin method to reduce the partial differential equations associated with simply supported boundary conditions. The novelty of the present model is the simultaneous prediction of the natural frequencies and their mode shapes versus different curvatures (cylindrical, spherical, conical, and plate) and the different types of FG-CNTs. In addition to combining the vibration analysis with optimization algorithms based on the genetic algorithm, a design optimization methode was developed to maximize the natural frequencies. By considering the expression of the non-dimensional frequency as an objective optimization function, a genetic algorithm program was developed by valuing the mechanical properties, the geometric properties and the FG-CNT configuration of shallow double curvature shells. The results obtained show that the curvature, the volume fraction and the types of NTC distribution have considerable effects on the variation of the Dimensionless Fundamental Linear Frequency (DFLF). The frequency response of the shallow shells of the FG-CNTRC showed two types of nonlinear hardening and softening which are strongly influenced by the change in the fundamental vibration mode. In GA optimization, the mechanical properties and geometric properties in the transverse direction, the volume fraction, and types of distribution of CNTs have a considerable effect on the fundamental frequencies of shallow double-curvature shells. Where the difference between optimized and not optimized DFLF can reach 13.26%.

Optimum Alignment of Marine Propulsion Shafting (박용추진축계의 최적배치에 관한 연구)

  • 문덕홍
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.18 no.1
    • /
    • pp.39-46
    • /
    • 1982
  • The author has developed the computer program in order to calculate the optimum alignment condition of marine propulsion shafting by linear programming method. The input of program was calculated by the matrix method of three-moment. He compared the calculated values with the experimental values measured by the strain gage on the model shaft, and the values of calculation on actual propulsion shafting with those of Det norske Veritas. The computer program of optimum alignment has been applied to the actual shaft. The results obtained are as follows: 1. To obtain the reaction of supporting points in the straight line necessary to the optimum alignment and the reaction influence number, after the computer program had been developed and then adapted, the result of experimental values and calculated values agreed with each other and the values of the actual shaft were also approximately similar to the values of other program. 2. In this paper, the measuring method on model shaft by strain gage can be effectively used at the time of adjusting alignment condition of actual shaft. 3. The supporting bearing should be considerably readjusted to the vertical direction in order to satisfy some limited condition.

  • PDF

Using element-embedded rebar model in ANSYS for the study of reinforced and prestressed concrete structures

  • Lazzari, Bruna M.;Filho, Americo Campos;Lazzari, Paula M.;Pacheco, Alexandre R.
    • Computers and Concrete
    • /
    • v.19 no.4
    • /
    • pp.347-356
    • /
    • 2017
  • ANSYS is a software well accepted by professionals and academics, since it provides a variety of finite elements, material constitutive models, and linear and nonlinear analysis of structures in general. For the concrete material, for instance, the software uses an elastoplastic model with the Willam-Warnke surface of rupture (1975). However, this model is only available for finite elements that do not offer the possibility of use of the element-embedded model for rebars, demanding a much larger amount of elements to discretize structures, making numerical solutions less efficient. This study is, therefore, about the development of a computational model using the Finite Element Method via ANSYS platform for nonlinear analysis of reinforced and prestressed concrete beams under plane stress states. The most significant advantage of this implementation is the possibility of using the element-embedded rebar model in ANSYS with its 2D eight-node quadratic element PLANE183 for discretization of the concrete together with element REINF263 for discretization of rebars, stirrups, and cables, making the solutions faster and more efficient. For representation of the constitutive equations of the steel and the concrete, a proposed model was implemented with the help of the UPF customization tool (User Programmable Features) of ANSYS, where new subroutines written in FORTRAN were attached to the main program. The numerical results are compared with experimental values available in the technical literature to validate the proposed model, with satisfactory results being found.

The Corrosion Study of Al Current Collector in Phosphonium Ionic Liquid as Solvent for Lithium Ion Battery

  • Cha, Eun-Hee;Mun, Jun-Young;Cho, E.-Rang;Yim, Tae-Eun;Kim, Young-Gyu;Oh, Seung-M.;Lim, Soo-A;Lim, Jea-Wook
    • Journal of the Korean Electrochemical Society
    • /
    • v.14 no.3
    • /
    • pp.152-156
    • /
    • 2011
  • A room temperature ionic liquid (RTIL) based on trihexyl (tetradecyl)phosphonium bis(trifluoromethanesulfonyl) imide ([$(C_6H_{13})_3P(C_{14}H_{29)}$] [TFSI];P66614TFSI) was synthesized and analyzed to determine their characteristics and properties. The bis(trifluoromethanesulfonyl)imide (TFSI) anion is widely studied as an ionic liquid (IL) forming anion which imparts many useful properties, notably electrochemical stability. Especially its electrochemical and physical characteristics for solvent of lithium ion battery were investigated in detail. $P_{66614}$ TFSI exhibits fairly low conductivity (0.89 mS $cm^{-1}$) and higher viscosity (298 K: 277 cP; 343 K: 39 cP) than other ionic liquids, but it exhibits a high thermal stability (over $400^{\circ}C$). Especially corrosion behavior on Al current collector was tested at room temperature and further it was confirmed that thermal resistivity for Al corrosion was highly increased in 1.0M LiTFSI/$P_{66614}$-TFSI electrolyte comparing with other RTILs by linear sweep thermometry.

A Development of Whipping Analysis Program for Ship Hulls (선체 휘핑 해석 전용 프로그램의 개발)

  • Seong-Whan Park;Jai-Kyung Lee;Sang-Heon Oh;Myung-Jae Song;Seung-Min Kwon
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.39 no.3
    • /
    • pp.64-74
    • /
    • 2002
  • A special purposed program for ship hull strength analysis considering whipping phenomena is developed. In this program, the non-linear hydrodynamic impact force is considered using the momentum slamming theory and the hull girder is modeled as elastic body on the base of Timoshenko's beam theory. The numerical verifications are conducted in the view points that the effect of slamming impact force, the effect of hydro-elastic formulation, and the effect of various design parameters such as ship speed, wave amplitude, wave length and others. By the application of a real ship design process, the availability of the program is proved. This program has a GUI function for many I/O data process as well as the function to show the 2-D ship motion in the graphic window, and has other available functions for the whipping analysis.

Seismic response analysis of layered soils considering effect of surcharge mass using HFTD approach. Part Ι: basic formulation and linear HFTD

  • Saffarian, Mohammad A.;Bagheripour, Mohammad H.
    • Geomechanics and Engineering
    • /
    • v.6 no.6
    • /
    • pp.517-530
    • /
    • 2014
  • Seismic ground response analysis is one of the most important issues in geotechnical earthquake engineering. Conventional seismic site response and free field analysis of layered soils does not consider the effect of surcharge mass which may be present on the top layer. Surcharge mass may develop extra inertial force to the soil and, hence, significantly affect on the results of seismic ground response analysis. Methods of analysis of ground response may also be categorized into time domain and frequency domain concepts. Simplicity in developing analytical relations and accuracy in considering soil dynamic properties dependency to loading frequency are benefits of frequency domain analysis. In this part of the paper, seismic ground response is analyzed using transfer function method for soil layers considering surcharge mass on the top layer. Equation of motion, wave equation, is solved using amended boundary conditions which effectively take the impact of surcharge mass into account. A computer program is developed by MATLAB software based on the solution method developed for wave equation. Layered soils subjected to earthquake loading were numerically studied and solved especially by the computer program developed in this research. Results obtained were compared with those given by DEEP SOIL computer program. Such comparison showed the accuracy of the program developed in this study. Also in this part, the effects of geometrical and mechanical properties of soil layers and especially the impact of surcharge mass on transfer function are investigated using the current approach and the program developed. The efficiency and accuracy of the method developed here is shown through some worked examples and through comparison of the results obtained here with those given by other approaches. Discussions on the results obtained are presented throughout in this part.

Evaluation of Rhophilin Associated Tail Protein (ROPN1L) in the Human Liver Fluke Opisthorchis viverrini for Diagnostic Approach

  • Geadkaew-Krenc, Amornrat;Grams, Rudi;Phadungsil, Wansika;Chaibangyang, Wanlapa;Kosa, Nanthawat;Adisakwattana, Poom;Dekumyoy, Paron
    • Parasites, Hosts and Diseases
    • /
    • v.58 no.4
    • /
    • pp.475-479
    • /
    • 2020
  • Tegumental and excretory-secretory proteins are reported as diagnostic antigens for human opisthorchiasis. Rhophilin associated tail protein1-like (OvROPN1L) protein of Opisthorchis viverrini sperm tail showed potential as a diagnostic antigen. The OvROPN1L recombinant fragments were assayed for diagnostic antigenicity for human opisthorchiasis using indirect ELISA. The strongest antigenic region was a N-terminus peptide of M1 - P56. One synthetic peptide (P1, L3-Q13) of this region showed the highest antigenicity to opisthorchiasis. Sera from other parasitic infections including Strongyloides stercoralis, hookworm, Taenia spp, minute intestinal flukes, Paragonimus spp showed lower reactivity to P1. Peptide P1 is located in the disordered N-terminus of ROPN1L supporting its suitability as linear epitope. In the Platyhelminthes the N-terminal sequence of ROPN1L is diverging with taxonomic distance further suggesting that peptide P1 has potential as diagnostic tool in the genus Opisthorchis/Clonorchis. It should be further evaluated in combination with peptides derived from other O. viverrini antigens to increase its diagnostic power.