• Title/Summary/Keyword: Linear of vertical field

Search Result 94, Processing Time 0.026 seconds

Design of Centrifugal Impeller for Passenger Car by Flow Field Analysis (유동장 해석을 통한 승용차 원심 회전차의 형상 설계)

  • Lee, Dong-Ryul
    • Journal of the Korean Society of Mechanical Technology
    • /
    • v.13 no.3
    • /
    • pp.49-55
    • /
    • 2011
  • For the purpose of the enhancement of the air conditioner performance and fuel effciency, several cases of centrifugal impeller for passenger car air conditioner have been numerically analyzed by changing central angle of blades and length of outlet for shape optimization of the impeller. Commercial CFD program Fluent 6.3.26 has been used to compute velocity, temperature, pressure and turbulence intensity that can lead numerous results. The central angles of two blades and three cases of outlet length led 4~12% and 3.5~6.4% differences of velocity and flow rate, respectively. The velocity distribution near the blade surface was axisymmetric and had a maximum value of 22.19 m/s and velocity of the vertical direction of the impeller showed linear increase with horizontal direction. At case 3 of oultet length, there existed a a minimum pressure value of -133320 Pa.

Characteristic Analysis of Linear Permanent Magnet Synchronous Motor according to steel and back iron. (철심의 유/무에 따른 직선형 영구 자석 동기 모터의 특성 해석)

  • Jang, Seok-Myeong;You, Dae-Joon;Lee, Sung-Ho;Chioi, Jang-Young;Jang, Won-Bum
    • Proceedings of the KIEE Conference
    • /
    • 2003.07b
    • /
    • pp.1054-1056
    • /
    • 2003
  • The slotless Permanent-Magnet Linear Synchronous Motors (PMLSM) have been developed for factory automation, transportation applications, wafer steppers, conveyance system, and so on. The current analysis and design are treated in air-cored PMLSM. This paper presents a design and analysis solutions for the general class of iron-cored Permanent magnet Linear Synchronous motor (PMLSM). In our design and analysis, rotor consisting of permanent magnets and slot less iron-cored coil stator are treated in a uniform way via vector potiential. For one such motor structure we give analytical formulas for its magnetic field, opitimal permanent magnet and winding coil thickness, trust force. We also provide comparisons of three types in Halbach, vertical, and horizontal magnet array.

  • PDF

Velocity Field Measurements of a Vertical Turbulent Buoyant Jet Using a PIV Technique (PIV 기법을 이용한 비등온 부력제트의 유동구조에 관한 연구)

  • Sin, Dae-Sik;Yun, Jeong-Hwan;Lee, Sang-Jun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.5
    • /
    • pp.611-618
    • /
    • 2001
  • The flow characteristics of a turbulent buoyant jet were experimentally investigated using a single-frame PIV system. The Reynolds number based on the nozzle exit velocity and nozzle diameter was about Re=5$\times$10$^3$. The instantaneous velocity fields in the streamwise plane passing the jet axis were measured in the near field X/D <11 with and without the temperature gradient. By ensemble averaging the instantaneous velocity fields, the spatial distributions of mean velocity, vorticity, and higher-order statistics up to third order were obtained. The temperature difference of 10$\^{C}$ does not affect a significant influence to the flow structure in the near field, but the total entrainment rate is increased slightly. The entrainment rate shows a linear variation with the streamwise distance in the region after X/D=5.0.

Design of Magnetic Systems for SNUT-79 Tokamak (SNUT-79 토카막의 자장 계통 설계)

  • Cheol Hee Nam;Sang Hee Hong;Kie Hyung Chung;Sang Ryul In
    • Nuclear Engineering and Technology
    • /
    • v.16 no.2
    • /
    • pp.89-96
    • /
    • 1984
  • A toroidal-field (TF) coil with a pure tension D-shape curve is designed for the confinement of high-temperature plasmas in the SNUT-79, which is a tokamak being built at Seoul National University. A toroidal assembly of 16 D-shape TF coils is designed to produce the magnetic field of up to 3T, of which ripples appear to be below 4% of the average toroidal field in the plasma region. Exact positions and currents in six equilibrium coils distributed symmetrically in the z=0 plane are found by the solution of a set of linear equations which is transformed from a Fredholm integral equation of the first kind. The decay indices resulted from equilibrium field indicate that the stability condition for vertical and horizontal displacements is satisfied.

  • PDF

Vertical Distribution of Weed Seed in the Soil as affected by Tillage and No-till (경운과 무경운에 따른 토양 내 잡초종자의 수직적 분포양상)

  • Lee, Byung-Mo;Park, Kwang-Lai;Lee, Youn;Cho, Jeong-Rae;Lee, Sang-Min;An, Nan-Hee;Choi, Hyun-Sug;Jee, Hyeong-Jin
    • Weed & Turfgrass Science
    • /
    • v.1 no.4
    • /
    • pp.1-5
    • /
    • 2012
  • A simple monitoring method was designed to evaluate seed bank in a upper soil (0 to 30 cm depth), which was observed for the pattern of vertical distribution of weed in the soil under tillage or no-tillage condition. The field experiment was established at an organic corn field located in Hwacheon in Kangwon-do from 2010 to 2011. Undistributed linear soil samples were taken using non-destructive soil sampler from 0 to 30 cm depth at the tillage or no-tillage soils. Weed seed distribution in the linear soil samples was estimated by counting the number of weed germinated according to the soil depth. Under tillage condition, the weed seeds were more evenly distributed from 0 to 30 cm depth, with being 75% of weed seeds located in 0 to 15 cm depth compared to the no-tillage condition. Soil samples taken by no-tillage condition had 85% of weed seeds within 15 cm of soil depth, with being 93% of weed seeds from 0 to 20 cm depth. The number of weeds or the number of weed species were three times higher for tillage soil compared to no-tillage soil, and the major dominant weed species were observed for annual plants, such as Echinochloa crus-gall, Mollugo pentaphylla, and Digitaria ciliaris.

Quality Test and Control of Kinematic DGPS Survey Results

  • Lim, Sam-Sung
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.10 no.5 s.23
    • /
    • pp.75-80
    • /
    • 2002
  • Depending upon geographical features and surrounding errors in the survey field, inaccurate positioning is inevitable in a kinematic DGPs survey. Therefore, a data inaccuracy detection algorithm and an interpolation algorithm are essential to meet the requirement of a digital map. In this study, GPS characteristics are taken into account to develop the data inaccuracy detection algorithm. Then, the data interpolation algothim is obtained, based on the feature type of the survey. A digital map for 20km of a rural highway is produced by the kinematic DGPS survey and the features of interests are lines associated with the road. Since the vertical variation of GPS data is relatively higher, the trimmed mean of vertical variation is used as criteria of the inaccuracy detection. Four cases of 0.5%, 1%, 2.5% and 5% trimmings have been experimented. Criteria of four cases are 69cm, 65cm, 61cm and 42cm, respectively. For the feature of a curved line, cublic spine interpolation is used to correct the inaccurate data. When the feature is more or less a straight line, the interpolation has been done by a linear polynomial. Difference between the actual distance and the interpolated distance are few centimeters in RMS.

  • PDF

Design of Next Generation Amplifiers Using Nanowire FETs

  • Hamedi-Hagh, Sotoudeh;Oh, Soo-Seok;Bindal, Ahmet;Park, Dae-Hee
    • Journal of Electrical Engineering and Technology
    • /
    • v.3 no.4
    • /
    • pp.566-570
    • /
    • 2008
  • Vertical nanowire SGFETs(Surrounding Gate Field Effect Transistors) provide full gate control over the channel to eliminate short channel effects. This paper presents design and characterization of a differential pair amplifier using NMOS and PMOS SGFETs with a 10nm channel length and a 2nm channel radius. The amplifier dissipates $5{\mu}W$ power and provides 5THz bandwidth with a voltage gain of 16, a linear output voltage swing of 0.5V, and a distortion better than 3% from a 1.8V power supply and a 20aF capacitive load. The 2nd and 3rd order harmonic distortions of the amplifier are -40dBm and -52dBm, respectively, and the 3rd order intermodulation is -24dBm for a two-tone input signal with 10mV amplitude and 10GHz frequency spacing. All these parameters indicate that vertical nanowire surrounding gate transistors are promising candidates for the next generation high speed analog and VLSI technologies.

A COG Variable Analysis of Air-rolling-breakfall in Judo (유도 공중회전낙법의 COG변인 분석)

  • Kim, Eui-Hwan;Chung, Chae-Wook;Kim, Sung-Sup
    • Korean Journal of Applied Biomechanics
    • /
    • v.15 no.3
    • /
    • pp.117-132
    • /
    • 2005
  • It was to study a following research of "A Kinematic Analysis of Air-rolling-breakfall in Judo". The purpose of this study was to analyze the Center of Gravity(COG) variables when performing Air-rolling-breakfall motion, while passing forward over(PFO) to the vertical-hurdles(2m height, take off board 1m height) in judo. Subjects were four males of Y. University squad, who were trainees of the demonstration exhibition team, representatives of national level judoists and were filmed by four 5-VHS 16mm video cameras(60field/sec.) through the three dimensional film analysis methods.COG variable were anterior-posterior directional COG and linear velocity of COG, vertical directional COG and linear velocity of COG. The data collections of this study were digitized by KWON3D program computed The data were standardized using cubic spline interpolation based by calculating the mean values and the standard deviation calculated for each variables. When performing the Air-rolling-breakfall, from the data analysis and discussions, the conclusions were as follows : 1. Anterior-posterior directional COG(APD-COG) when performing Air-rolling-breakfall motion, while PFO over to the vertical-hurdles(2m height) in judo. The range of APD-COG by forward was $0.31{\sim}0.41m$ in take-off position(event 1), $1.20{\sim}1.33m$ in the air-top position(event 2), $2.12{\sim}2.30m$ in the touch-down position(event 3), gradually and $2.14{\sim}2.32m$ in safety breakfall position(event 4), respectively. 2 The linear velocity of APD-COG was $1.03{\sim}2.14m/sec$. in take-off position(event 1), $1.97{\sim}2.22m/sec$. gradually in the air-top position(event 2), $1.05{\sim}1.32m/sec$. in the touch-down position (event 3), gradual decrease and $0.91{\sim}1.23m/sec$. in the safety breakfall position(event 4), respectively. 3. The vertical directional COG(VD-COG) when performing Air-rolling-breakfall motion, while PFO to the vertical-hurdles(2m height) in judo. The range of VD-COG toward upward from mat was $1.35{\sim}1.46m$ in take-off position(event 1), the highest $2.07{\sim}2.23m$ in the air-top position(event 2), and after rapid decrease $0.3{\sim}0.58m$ in the touch-down position(event 3), gradual decrease $0.22{\sim}0.50m$ in safety breakfall position(event 4), respectively. 4. The linear velocity of VlJ.COG was $1.60{\sim}1.87m/sec$. in take-off position(event 1), $0.03{\sim}0.08m/sec$. gradually in the air-top position(event 2), $-4.37{\sim}\;-4.76m/sec$. gradual decrease in the touch-down position(event 3), gradual decrease and -4.40${\sim}\;-4.77m/sec$. in safety breakfall position(event 4), respectively. When performing Air-rolling-breakfall showed parabolic movement from take-off position to air-top position, and after showed vertical fall movement from air-top position to safety breakfall. In conclusion, Ukemi(breakfall) is safety fall method Therefore, actions need for performing safety fall movement, that decrease and minimize shock and impact during Air-rolling-breakfall from take-off board action to air-top position must be maximize of angular momentum, and after must be minimize in touch-down position and safety breakfall position.

Numerical Simulation of Buoyant flume Dispersion in a Stratified Atmosphere Using a Lagrangian Stochastic Model

  • Kim, Hyun-Goo;Noh, Yoo-Jeong;Lee, Choung-Mook;Park, Don-Bum
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.3
    • /
    • pp.440-448
    • /
    • 2003
  • In the present paper, numerical simulations of buoyant plume dispersion in a neutral and stable atmospheric boundary layer have been carride out. A Lagrangian Stochastic Model (LSM) with a Non-Linear Eddy Viscosity Model (NLEVM) for turbulence is used to generate a Reynolds stress field as an input condition of dispersion simulation. A modified plume-rise equation is included in dispersion simulation in order to consider momentum effect in an initial stage of plume rise resulting in an improved prediction by comparing with the experimental data. The LSM is validated by comparing with the prediction of an Eulerian Dispersion Model (EDM) and by the measured results of vertical profiles of mean concentration in the downstream of an elevated source in an atmospheric boundary layer. The LSM predicts accurate results especially in the vicinity of the source where the EDM underestimates the peak concentration by 40% due to inherent limitations of gradient diffusion theory. As a verification study, the LSM simulation of buoyant plume dispersions under a neutral and stable atmospheric condition is compared with a wind-tunnel experiment, which shows good qualitative agreements.

Fluid Flow in a Circular Cylinder Subject to Circulatory Oscillation-Theoretical Analysis (회전요동하는 원통내의 유동특성 - 이론적 해석)

  • Seo,Yong-Gwon;Kim, Hyeon-Min
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.20 no.12
    • /
    • pp.3960-3969
    • /
    • 1996
  • A fluid flow inside a circular cylinder subject to horizontal and circular oscillation is analyzed theoretically. Under the assumption of small-amplitude oscillation, the governing equations take linear forms. The velocity field is obtained in terms of the first kind of Bessel function of order 1. It was found that a particle describes an orbit close to a circle in the central region and an arc near the side wall. We also obtained the Stokes' drift velocity induced by the traveling wave along the circumferential direction. The Eulerian streaming velocities at the edge of the bottom and side boundary layers were also obtained. It was shown that the vertical component of the steady streaming velocity on the side wall is almost proportional to the amplitude of the free surface motion.