• 제목/요약/키워드: Linear motors

검색결과 386건 처리시간 0.024초

2.2 kW와 3.7 kW 유도전동기의 정상과 구속운전에 따른 전류 및 온도 특성 (Characteristic of Current and Temperature according to Normal and Abnormal Operations at Induction Motor of 2.2 kW and 3.7 kW)

  • 이종찬;김두현;김성철
    • 한국안전학회지
    • /
    • 제38권3호
    • /
    • pp.35-42
    • /
    • 2023
  • This study analyzed the current and temperature characteristics of major components of an induction motor during normal and abnormal operations as functions of the difference in the rated capacities of medium and large-sized motors widely used in industrial settings. The temperature rise equation of the induction motor winding was derived through locked-rotor operation experiments and linear regression analysis. When the ambient temperature is 40 ℃, the time to reach 155 ℃, the temperature limit of the insulation class (F class) of the winding of the induction motor, was confirmed to be 48 seconds for the 2.2 kW induction motor and 39 seconds for the 3.7 kW induction motor. This means that when the rated capacity is large or the installation environment is high temperature, the time to reach the temperature limit of the insulation class during locked-rotor operation is short, and the risk of insulation deterioration and fire is high. In addition, even if the EOCR (Electronic Over Current Relay) is installed, if the setting time is excessively set, the EOCR does not operate even if the normal and locked-rotor operation of the induction motor is repeated, and the temperature limit of the insulation grade of the winding of the induction motor is exceeded. The results of this study can be used for preventive measures such as the promotion of electrical and mechanical measures for the failure of induction motors and fire prevention in industrial sites, or the installation of fire alarm systems.

Leg-angle 변화에 따른 V-type 초음파모터의 특성 (Characteristics of V-type Ultrasonic Motor with the Change Angle of Legs)

  • 정성수;박민호;김종욱;박충효;정현호;박태곤
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2010년도 하계학술대회 논문집
    • /
    • pp.320-320
    • /
    • 2010
  • In the case of existing ultrasonic motors, they have characteristics such as outstanding response speed, speed and high efficiency. However, it's very hard to use practically them as small motors due to complicated structure and expensive cost. This paper proposed v-type ultrasonic linear motor. Stator of the motor is composed of thin elastic body and four ceramics attached to upper and bottom areas of the body. The ceramics have each direction of polarization. When two harmonic voltages which had $90^{\circ}$ phase difference were applied to the ceramics, the symmetric and anti-symmetric displacements were generated at the tip to make the elliptical motion. To find out a model that generates maximum displacement at contact tip, FEM program was used with change of leg-angle. In addition, optimal model was chosen by considering magnitude and shape of displacement according to change of frequency.

  • PDF

Design and Analysis for Loss Reduction of High-Speed Permanent Magnet Motor using a Soft Magnetic Composite

  • Lee, Sung-Ho;Kim, Yong-Jae;Lee, Kyu-Seok;Kim, Sung-Jin
    • Journal of Magnetics
    • /
    • 제20권4호
    • /
    • pp.444-449
    • /
    • 2015
  • Soft magnetic composites (SMCs) are especially suitable for the construction of low-cost, high-performance motors with 3-D magnetic fields. The main advantages of SMCs is that the iron particles are insulated by the surface coating and adhesive used for composite bonding, the eddy-current loss is much lower than that in laminated steels, especially at higher frequencies, and the hysteresis loss becomes the dominant component of core losses. These properties enable machines to operate at higher frequencies, resulting in reduced machine size and weight. In this paper, 3-D topologies are proposed that enable the application of SMCs to effectively reduce losses in high-speed permanent magnet (PM) motors. In addition, the electromagnetic field characteristics of the motor topologies are evaluated and compared using a non-linear finite element method (FEM) based on 3-D numerical analysis, and the feasibility of the motor designs is validated.

VCM을 이용한 노광기용 정밀 레티클 스테이지의 저진동 제어시스템 개발 (Design of the Low Hunting Controller for the Reticle Stage for Lithography)

  • 김문수;오민택;김정한
    • 한국공작기계학회논문집
    • /
    • 제17권4호
    • /
    • pp.51-58
    • /
    • 2008
  • This paper presents a new design of the precision stage for the reticle in lithography process and a low hunting control method for the stage. The stage has three axes for X, Y, ${\theta}_z$ those actuated by three voice coil motors individually. The designed reticle stage system has three gap sensors and voice coil motors, and supported by four air bearings and the forward/inverse kinematics of the stage were solved to get an accurate reference position. When a stage is in regulating control mode, there always exist small fluctuations(stage hunting) in the stage movement. Because the low stage hunting characteristic is very important in recent lithography and nano-level applications, a special regulating controller for ultra low hunting is proposed in this paper. Also this research proposed the 2-step transmission system for preventing the noise infection from environmental devices. The experimental results showed the proposed regulating control system reduced hunting noise as 35nm(rms) when a conventional PID generates 77nm(rms) in the same mechanical system. Besides the reticle stage has 100nm linear accuracy and $1{\mu}rad$ rotation accuracy at the control frequency of 8kHz.

Improved Torque Calculation of High Speed Permanent Magnet Motor with Compressor Loads Using Measured Power Factor Angle and Analytical Circuit Parameters

  • Choi, Jang-Young;Jang, Seok-Myeong;Lee, Sung-Ho
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • 제2권2호
    • /
    • pp.159-164
    • /
    • 2013
  • Difficulty of torque measurements in high-speed permanent magnet (HSPM) motors has necessitated the development of improved torque calculations. Hence, this paper presents an analytical torque calculation of a high speed permanent magnet (HSPM) motor based on the power factor angle. On the basis of analytical magnetic field solutions, the equations for circuit parameters such as back-emf and synchronous inductance are derived analytically. All analytical results are validated extensively by non-linear finite element (FE) calculations and measurements. The internal angle (${\delta}$) between the back-emf and the phase current is calculated according to the rotor speed by using analytical circuit parameters and the measured power factor because this angle is not measured but estimated in case of sensorless drive of the HSPM motor, significantly affecting torque calculation. Finally, the validity of the torque analysis method proposed in this paper is confirmed, by showing that the torque calculated on the basis of the internal angle is in better agreement with the measurements.

새로운 3-자유도 구형 모터에 관한 연구 (A Study on The Novel Structured 3-DOF Spherical Motor)

  • 이동철;김대경;권병일
    • 전기학회논문지
    • /
    • 제57권8호
    • /
    • pp.1362-1370
    • /
    • 2008
  • This paper describes the design and characteristic analysis of a novel 3-DOF(Degree of Freedom) spherical motor. For multi DOF actuating, several numbers of motors have been used. By the using of normal motors they connected each other in single joint, is necessary to a several type of complex power transmission devices. The 3-DOF spherical motor can drive roll, pitch, and yaw motion in only one unit and it is not necessary to use additional gears and links parts. Therefore the using of 3-DOF spherical motor can eliminate; combined effects of inertia, backlash, non-linear friction, and elastic deformation of gears. In this paper, we propose the novel structured 3-DOF spherical motor and derive its principles of operation. Firstly, we designed concept model of novel structured 3-DOF spherical motor. Next, we derive the control method by calculating the currents. Also, to have intuitive driving control, we express the rotor position in equivalent angle-axis system and determine the exciting period of currents from the calculation result of the currents. To verify the control method, we calculated the currents by the position of rotor. and then we analyzed the characteristics by 3D Finite Element Method when the calculated currents are excited.

Robust Optimal Nonlinear Control with Observer for Position Tracking of Permanent Magnet Synchronous Motors

  • Ha, Dong-Hyun;Lim, Chang-Soon;Hyun, Dong-Seok
    • Journal of Power Electronics
    • /
    • 제13권6호
    • /
    • pp.975-984
    • /
    • 2013
  • This paper proposes a robust optimal nonlinear control with an observer to reject the offset errors of position tracking for surface mounted permanent magnet synchronous motors. We provide the control method to reject offset errors and load torque for designing field oriented control (FOC) based the alternating current (AC) frame. The proposed method consists of a torque generator, a commutation scheme, an electrical controller, and a load torque observer. The mechanical controller is designed to compensate for load torque and the offset error and generate the desired torque. The commutation scheme is proposed to create the desired currents for the desired torque. The electrical controller is developed to guarantee the desired currents. The observer is designed to estimate both the velocity and the load torque. In order to obtain the robustness to parameter uncertainties and a gain tuning guide, the linear quadratic regulator method is applied to the proposed method. The closed-loop stability is proven. A detailed process for the FOC design and an analysis of the control methods based on the AC frame are presented. The performance of the proposed method was validated via experiments. The proposed method obtains the FOC based on the AC frame. Furthermore, the position tracking performance of the proposed method is superior to that of the conventional method.

LMI-based Sliding Mode Speed Tracking Control Design for Surface-mounted Permanent Magnet Synchronous Motors

  • Leu, Viet Quoc;Choi, Han-Ho;Jung, Jin-Woo
    • Journal of Electrical Engineering and Technology
    • /
    • 제7권4호
    • /
    • pp.513-523
    • /
    • 2012
  • For precisely regulating the speed of a permanent magnet synchronous motor system with unknown load torque disturbance and disturbance inputs, an LMI-based sliding mode control scheme is proposed in this paper. After a brief review of the PMSM mathematical model, the sliding mode control law is designed in terms of linear matrix inequalities (LMIs). By adding an extended observer which estimates the unknown load torque, the proposed speed tracking controller can guarantee a good control performance. The stability of the proposed control system is proven through the reachability condition and an approximate method to implement the chattering reduction is also presented. The proposed control algorithm is implemented by using a digital signal processor (DSP) TMS320F28335. The simulation and experimental results verify that the proposed methodology achieves a more robust performance and a faster dynamic response than the conventional linear PI control method in the presence of PMSM parameter uncertainties and unknown external noises.

MRAS Based Speed Estimator for Sensorless Vector Control of a Linear Induction Motor with Improved Adaptation Mechanisms

  • Holakooie, Mohammad Hosein;Taheri, Asghar;Sharifian, Mohammad Bagher Bannae
    • Journal of Power Electronics
    • /
    • 제15권5호
    • /
    • pp.1274-1285
    • /
    • 2015
  • This paper deals with model reference adaptive system (MRAS) speed estimators based on a secondary flux for linear induction motors (LIMs). The operation of these estimators significantly depends on an adaptation mechanism. Fixed-gain PI controller is the most common adaptation mechanism that may fail to estimate the speed correctly in different conditions, such as variation in machine parameters and noisy environment. Two adaptation mechanisms are proposed to improve LIM drive system performance, particularly at very low speed. The first adaptation mechanism is based on fuzzy theory, and the second is obtained from an LIM mechanical model. Compared with a conventional PI controller, the proposed adaptation mechanisms have low sensitivity to both variations of machine parameters and noise. The optimum parameters of adaptation mechanisms are tuned using an offline method through chaotic optimization algorithm (COA) because no design criterion is given to provide these values. The efficiency of MRAS speed estimator is validated by both numerical simulation and real-time hardware-in-the-loop (HIL) implementations. Results indicate that the proposed adaptation mechanisms improve performance of MRAS speed estimator.

대칭구조 철심형 리니어모터 이송계에서의 코깅현상에 관한 연구 (Investigation of Cogging Effect in Bisymmetric Dual Iron Core Linear Motor Stage)

  • 오정석;박천홍
    • 한국정밀공학회지
    • /
    • 제25권10호
    • /
    • pp.115-121
    • /
    • 2008
  • This paper presents bisymmetric dual iron core lineal motor stage for heavy-duty high precision applications such as large area micro-grooving machines or high precision roll die machines. In this stage, two iron core linear motors are installed in laterally symmetric way to cancel out the attractive forces. Main focus was given to analyzing the effect of cogging force and moment for two different layouts, which are symmetric and half-pitch shifted ones. Experimental results showed that the symmetric layout is more adequate for high precision applications because of its clear moment cancellation effect. It was also verified that the effect of the residual cogging moment can be suppressed further by increasing the bearing stiffness. One problem of the symmetric layout is added cogging force which hinders smooth motion, but its effect was relatively small compared with that of moment cancellation.