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Abstract  

 

This paper deals with model reference adaptive system (MRAS) speed estimators based on a secondary flux for linear 
induction motors (LIMs). The operation of these estimators significantly depends on an adaptation mechanism. Fixed-gain PI 
controller is the most common adaptation mechanism that may fail to estimate the speed correctly in different conditions, such as 
variation in machine parameters and noisy environment. Two adaptation mechanisms are proposed to improve LIM drive system 
performance, particularly at very low speed. The first adaptation mechanism is based on fuzzy theory, and the second is obtained 
from an LIM mechanical model. Compared with a conventional PI controller, the proposed adaptation mechanisms have low 
sensitivity to both variations of machine parameters and noise. The optimum parameters of adaptation mechanisms are tuned 
using an offline method through chaotic optimization algorithm (COA) because no design criterion is given to provide these 
values.  The efficiency of MRAS speed estimator is validated by both numerical simulation and real-time hardware-in-the-loop 
(HIL) implementations. Results indicate that the proposed adaptation mechanisms improve performance of MRAS speed 
estimator. 
 
Key words: Adaptation mechanism, Fuzzy controller, Linear induction motor (LIM), Mechanical model, Model reference 
adaptive system (MRAS), Vector control. 
 

I. INTRODUCTION 

Recently, LIM has been widely used in industrial 
applications such as transportation systems. Compared with 
conventional structures (i.e., rotary electric motor and gear 
box), these types of motors remove all mechanical interfaces 
to produce a direct linear motion. The counterpart of this 
advantage is an asymmetric structure of LIM both in 
longitudinal and transversal directions, which creates the 
so-called longitudinal end effect and transversal edge effect, 
respectively. These phenomena increase the complexity of 
the LIM model and proper control of electromechanical 
characteristics of the LIM, such as thrust, magnetic flux, and 
linear speed. 

LIM equivalent circuit (EC) has been vastly developed in 
technical literatures [1]-[8]. To address the mentioned subject, 
Nondal, et al. [1] and Wei xu, et al. [2] obtained an EC using 
a winding function theory for high speed double side LIM 
and single side LIM, respectively. Pai, et al. [3] derived an 
EC of LIM based on a field theory where longitudinal end 
effects, transversal edge effect, field diffusion in the 
secondary sheet, and back-iron saturation have been 
considered. Moreover, some researchers utilize 
one-dimensional (1-D) and two-dimensional (2-D) field 
theories to obtain EC of the LIM [4]-[6]. However, majority 
of these ECs describe the steady-state behavior of LIM. 
Huang, et al. [7] considered longitudinal end effect as a 
braking force in the mechanical equation of LIM. Duncan's 
EC [8] is similar to a rotary induction motor except that some 
modifications are applied to the parallel magnetizing branch 
to consider longitudinal end effect. This EC can describe both 
dynamic and steady-state behaviors of LIM. 

Using the aforementioned ECs, various control 
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strategieshave been developed, in particular, direct/indirect 
vector controls [9]-[13]. Some of these strategies are based on 
mechanical sensors to provide linear speed [9]-[11] and the 
other one estimate speed using terminal voltage and current 
of LIM [12], [13]. Sung, et al. [9] employ a per-phase 
steady-state Duncan’s EC to derive a dynamic model of LIM 
where Duncan’s modifications are only executed in d-axis EC, 
whereas Kang, et al. [10] applied the modifications both in 
d-axis and q-axis ECs. Afterward, these papers presented an 
indirect vector control scheme based on a dynamic EC of 
LIM. Direct vector control scheme is developed in [11]; in 
this scheme, the “voltage model” and “current model” were 
deduced based on the space-vector equation of LIM. Then, a 
secondary flux angle is estimated by the flux models. In the 
case of vector control of LIM (with the speed loop), speed 
and position are measured by a linear encoder which is more 
expensive and less reliable versus a rotary machine. Hence, 
presenting a high-performance sensorless vector control of 
LIM is very challenging work; given the complexity of the 
machine model, very few studies have been proposed using 
this approach [12]. In particular, Cirrincione, et al. [12] have 
developed a neural network MRAS speed estimator for LIM 
based on Duncan’s EC where several experiment results have 
been presented. Liu, et al. [13] considers the end effect as a 
braking force approximated by a third-order Taylor’s series. 
Afterward, a fuzzy observer is presented to estimate linear 
speed and secondary flux. 

In this paper, the main focus is on the MRAS speed 
estimator. Two adaptation mechanisms are proposed instead 
of a conventional PI controller, which would improve speed 
estimation, particularly at low speed. An indirect vector 
control method, described in [10], is used to properly control 
magnetic flux and linear speed. Optimum parameters of the 
proposed adaptation mechanisms are determined by an 
offline method through COA. First, a dynamic model of  
LIM is provided based on a steady-state Duncan’s EC. 
Afterward, the details of the MRAS speed estimator with 
improved adaptation mechanisms are developed. Simulation 
and real-time HIL results are presented to demonstrate better 
performance of the proposed schemes against a conventional 
PI controller. 
 

II. DYNAMIC MODEL OF LIM 

The structure of LIM is shown in Fig. 1. In the LIM, during 
the primary (stator) movement, the secondary (rotor) is 
continuously replaced by a new material. Because of the 
appearance of this new material, the air-gap flux density 
gradually (not suddenly) increased at the entry of primary 
with total secondary time constant described in: 

rlrmr RLLT /)(  , where mL , lrL , and rR  are 

magnetizing inductance, secondary leakage inductance and 
secondary resistance, respectively. The flux density decreased  

 
Fig. 1. Structure of LIM. 

 

 
Fig. 2. Space vector equivalent circuit of LIM. 
 
at the exit of primary with secondary leakage time constant 

show in: rlrr RLT / . Increasing and decreasing the 

air-gap flux density cause an eddy current in the secondary 
sheet. The eddy current deteriorates the air-gap flux density 
in longitudinal direction as well as increases ohmic losses. 
Such phenomenon is called end effect. Duncan described this 
effect by end effect factor [8]: 
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The term lpv vLT /  is the time of traverse of an imaginary 

point by the primary core where pL  and lv  are the 

primary length and linear speed, respectively. The 
magnetizing inductance is modified by this factor which is 
shown below: 

))(1( QfLM m                (2) 

where:  
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  The space vector EC of LIM is shown in Fig. 2. The term 

)(QfRr  demonstrates the ohmic losses due to end effect. 

EC is similar to rotary induction motor except that some 
modifications are applied to a parallel magnetizing branch. 
The voltage equations in arbitrary reference frame are as 
follows: 

)( rsshsssss iiRpjiRv          (4) 

)()(0 rsshrrrrrr iiRpjiRv      (5) 

The flux linkage equations are as follows: 

rsss MiiL                  (6) 

srrr MiiL                 (7) 
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with: 

MLL lss                   (8) 

MLL lrr                   (9) 

)(QfRR rsh                  (10) 

where sR and rR  are the primary and secondary resistances,  

si  and ri  are the primary and secondary currents, s  and  

r  are the primary and secondary  flux linkages, sL  and 

rL  are the primary and secondary self inductances, r  is 

angular electrical speed of primary, and j  is the imaginary 

unit. The electromagnetic thrust generated by LIM is calculated 
as follows: 

)Re(
22

3
sse ij

p
F 




             (11) 

where p  and   are the pole number and the pole pitch, 

respectively. 
 

III. FLUX ESTIMATOR BASED ON MACHINE MODEL 

  The amplitude and angle of flux linkage are two important 
variables that need to be estimated in direct/indirect vector 
control schemes. Flux estimators are generally obtained from 
voltage equations in the same reference frame. Therefore, one 
of the flux estimators always depends on linear speed. 
Employing flux models in an adaptive scheme establishes 
MRAS speed estimator. The so-called voltage model and 
current model are derived from primary and secondary 
voltage equations, respectively, as flux estimators.  
  Some assumptions are applied to dynamic equations of 
LIM [3], [11]: 

 The secondary leakage inductance is zero. 

( 0lrL ) 

 The rate of change of linear speed is zero. 

(
0

dt

dvl

) 

Using equation (4) in stationary reference frame ( 0 ) and 
equations (6) and (7) with some mathematical manipulation, 
the voltage model is derived as follows: 

r
sh

slssssr M

R
ipLiRvp           (12) 

Using equation (5) in primary reference frame ( r  ) and 
equations (6) and (7), the current model is obtained as 
follows: 

rrr
shr

srr j
M

RR
iRp  ˆˆˆ 


          (13) 
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2
 , if equations (12) and (13) are 

decomposed in their real and imaginary parts, the following 

 
Fig. 3. The structure of voltage and current model. 
 

four scalar equations is provided: 
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The voltage model and the current model, described by 
Equation (14) are shown in Fig. 3. The current model needs 
linear speed to obtain secondary flux, whereas the voltage 
model decouples from the linear speed. 

 

IV. MRAS BASED SPEED ESTIMATOR 

  Among the different schemes for sensorless control of 
induction machine, MRAS speed estimator is widely used 
because of its simple structure and low computation [14]. 
This estimator is constituted from two different models, 
namely reference model and adjustable model, but both 
estimates the same state variable. The voltage and current 
model, described in previous section, are considered as a 
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reference and adjustable model, respectively. In this paper, 
MRAS speed estimator is based on a secondary flux (i.e., the 
voltage and current model estimate the secondary flux).  
  In the MRAS speed estimator strategy, linear speed is 
operated as an adaptive parameter and continuously returned 
to the current model by an adaptation mechanism. The 
adaptation mechanism must be designed to ensure stability of 
the system. For this purpose, MRAS speed estimator 
generally can be represented by two basic subsystems, 
namely, linear time-invariant feedforward and nonlinear 
time-variant feedback subsystems. Then, the adaptation 
mechanism is designed according to Popov’s hyperstability 
theory [15] and [16]. Starting from the current model and 
subtract it from the corresponding equations for the voltage 
model, the state-space error equations can be written as 
follows: 
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where rdrdd   ˆ  and rqrqq   ˆ  denote 

secondary flux errors in d-axis and q-axis, respectively. This 
equation can be written as  

WAεε p                 (16) 

where A  is the state matrix. 
  According to Popov’s criterion for stability, the linear 
time-invariant feedforward transfer matrix must be strictly 
positive real. In this study, the feedforward transfer matrix is 

  1)(  AIF ss , where I  is the identity matrix. With 

extensive calculation, this matrix is positive and real. On the 
other hand, nonlinear time-variant feedback subsystem must 
fulfill Popov's integral inequality as follows: 

 1
0

0
t T dtWε                 (17) 

If Popov’s inequality is solved in time interval  10 t  for 

all 01 t , then a proper candidate adaptation mechanism is 

expressed as dFFv ipl  )ε()ε(ˆ  and substitute the error 

matrix from equation (15) in (17), then the adaptation 
mechanism is derived as 

vpp KF                   (18) 

vii KF                   (19) 

where v  is speed tuning signal defined as follows: 

rqrdrdrqv  ˆˆ                (20) 

The structure of MRAS speed estimator is shown in Fig. 4. 
The speed tuning signal is an important parameter in MRAS 

 
Fig. 4. MRAS based speed estimator. 

   
speed estimator which is acquired by Popov’s hyperstability 
theory with PI controller as an adaptation mechanism 
candidate. This parameter is successfully applied to two other 
adaptation mechanisms (described in the next sections) and 
stability of the system is observed for a wide range of linear 
speed from low speed to twice rated speed with rated load 
force. 
  In MRAS speed estimator, linear speed is used as an 
adaptive variable. The adaptation mechanism obtains the 
linear speed from the speed tuning signal. Therefore, the 
quality of estimated speed is related to the operation of 
adaptation mechanism. PI controllers are generally used in 
industrial applications because of its simple structure. This 
controller can properly estimate linear speed over a wide 
speed range. However, several factors, such as variation of 
machine parameters, nonlinear properties of voltage source 
inverter and measurement noise, affect the operation of PI 
controller, especially at low speed [14]. In the next sections, 
two robust adaptation mechanisms replace the PI controller. 

 

V. ADAPTATION MECHANISM BASED ON FUZZY 
CONTROLLER 

  A fuzzy logic is an interesting method to formulate human 
knowledge. This method is based on fuzzy rules, which can 
be obtained through the knowledge of experts. Among 
various applications of fuzzy logic method, fuzzy controller 
is important in literature. The fuzzy controller is very suitable 
for control, estimation and optimization of complex nonlinear 
dynamic systems, such as induction machines [15].  

In this paper, a fuzzy controller is used as a robust 
adaptation mechanism to estimate linear speed. The structure 
of fuzzy controller is shown in Fig. 5. The inputs of this 
controller are speed tuning signal and its changes, and the 
output is an estimated linear speed of LIM. This controller 
consists of three basic parts: fuzzification process, inference 
engine based on fuzzy rules (a set of If-Then rules), and 
defuzzification process. Each definitive input point is mapped 
to a fuzzy set by fuzzifier and the reverse process is done by a 
defuzzifier. The inference engine obtains an output fuzzy set 
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Fig. 5. Fuzzy controller. 

 

 
Fig. 6. Membership functions of (a) speed tuning signal (b) 
changes of speed tuning signal (c) changes of estimated linear 
speed and (d) nonlinear surface of inputs/output. 

 
using a rule base generated from human knowledge. In this 
study, the center average (CA) method is used as defuzzifier 
which can be expressed as follows: 








N

i
i

N

i
ii

X

XX

X

1

1

)(

)(





              (21) 

where N  is the number of rules, )( iX  is the 

membership grade of the fuzzy output iX  given by i th 

rule. 
  Appropriate determination of fuzzy rules is the most 
important step for design of fuzzy controller because of the 
direct impact of the rules on the dynamic and steady-state 
errors of the system. One common method for selection of 
rules in adaptive scheme applications is the symmetric 
approach where the matrix of fuzzy rules has a symmetric 
distribution [17]. The fuzzy rules produced by this approach 
are shown in Table I.  

The fuzzification and defuzzification processes are 
completed by means of symmetrical triangular membership 
functions which provide a desirable dynamic and steady-state 
performance. The membership functions of inputs and output 
are shown in Figs. 6(a), (b), and (c), respectively. 

Also, Fig. 6(d) demonstrates nonlinear surface of inputs 

TABLE I 
MATRIX OF FUZZY RULES 

 

v
v  

NB NM NS Z PS PM PB
NB NB NB NB NB NM NS Z 

NM NB NB NB NM NS Z PS

NS NB NB NM NS Z PS PM

Z NB NM NS Z PS PM PB

PS NM NS Z PS PM PB PB

PM NS Z PS PM PB PB PB

PB Z PS PM PB PB PB PB

 
and output which is acquired by mapping the relationship 
between input and output variables according to a fuzzy rule 
base. Since the matrix of fuzzy rules has a symmetric 
distribution, the nonlinear surface of fuzzy controller 
continuously decreased. 

In the fuzzy controller, the output and each of the inputs 
are described by the following 7 membership functions: NB 
(Negative Big), NM (Negative Medium), NS (Negative 
Small), Z (Zero), PS (Positive Small), PM (Positive Medium), 

and PB (Positive Big). This matrix is created by 77  rules 

because the inputs are labeled by 7 membership functions. 
The membership functions are considered in normalized 
form.  

To obtain the actual value of the rate of change of the 

estimated speed lv̂ , the inputs are multiplied by two 

coefficients 1K  and 2K , the output is multiplied by 

coefficient 3K  and the estimated linear speed is calculated 

as 

)(ˆ)1(ˆ)(ˆ kvkvkv lll            (22) 

 

VI. ADAPTATION MECHANISM BASED ON 
MECHANICAL MODEL 

  To improve transient operation of MRAS speed estimator, 
the mechanical equation of LIM can be used in the adaptation 
mechanism [18]. These equations are as follows: 

)ˆˆ(
1

ˆ lel FF
m

v                (23) 

0ˆ lF
                    (24) 

Because of the simplicity of the mechanical equation, the 
load force is assumed as a constant value while the friction 
force is neglected. The speed tuning signal is added to the 
above equation as a proportional correction term: 

vpvlel KFF
m

v  )ˆˆ(
1̂            (25) 

vpfl KF 
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                 (26) 
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Fig. 7. Block diagram of sensorless indirect vector control. 

 

where pvK  and pfK  are the speed and force gain, 

respectively. Using equations (25) and (26), both linear speed 
and load force can be estimated using the speed tuning signal. 
In this paper, the parameters of all studied adaptation 
mechanisms are provided by COA. 

 

VII. CHAOTIC	OPTIMIZATION	ALGORITHM 

  Most problems, such as optimal design of fuzzy controller 
in the complex nonlinear system, can be developed as an 
optimization problem. Global optimum detection is one of the 
most important factors in optimization algorithms. Most 
heuristic optimization algorithms have been introduced in 
technical literatures such as genetic algorithm (GA), particle 
swarm optimization (PSO), simulated annealing (SA), and 
COA, which try to find a global optimal point. The main 
features of COA are as follows [19], [20]: 

 Distinguishes between local and global optimal 
points by its inherent powerful structure, 

 Does not produce repetitive numbers in searching 
progress, 

 Easily implemented and running time is fairly short. 
  The COA usually has two main steps as follows [20]: 
Step 1: Mapping a generated sequence of chaotic points from 
the chaotic space to the solution space and then providing a 
current optimum point with respect to the objective function. 
Step 2: Obtaining a global optimal point using current 
optimal point and chaotic dynamics.  
  Accurate determination of adaptation mechanism 
parameters has a significant role in the level of quality of 
estimated speed. A trial-and-error method is conventionally 
adopted for such nonlinear problems. However, optimum 
coefficients of the controllers may not be obtained by this 
method. An optimization technique, such as COA, provides 
an intelligent trial-and-error process. As a result, the COA is 
adopted to determine adaptation mechanism coefficients. For 

this purpose, an objective function is defined as follows: 

 
simt

l dtvtf
0

              (27) 

where lv  is the error of real and estimated speed and 

simt  is the simulation time. The results of COA for 

adaptation mechanism parameters are shown in the 
Appendix. 

 

VIII. SIMULATION RESULTS  

The operation of MRAS speed estimator with the proposed 
adaptation mechanisms is verified using numerical simulation. 
For this purpose, the Matlab/Simulink software is adopted. 
The block diagram of the computer simulation model is 
shown in Fig. 7. According to this figure, linear speed is 
obtained using terminal voltages and currents of LIM. 
Afterward, the estimated speed is used in the current 
decoupling network to provide the command values of 
currents in the synchronous reference frame. The error of 
currents is applied to PI controller to provide voltage 
commands similarly in the synchronous reference frame. 
Some other details of the indirect vector control scheme are 
presented in [10]. In this study, a single sided LIM chooses 
which parameters of motor are shown in the Appendix. 

A. Rated Speed Operation 

The operation of indirect vector control strategy with MRAS 
speed estimator for PI, fuzzy, and mechanical adaptation 
mechanisms at rated speed is shown in Figs. 8(a), (b) and (c), 
respectively. In this case, the command value of linear speed is 

increased from sm /2.0  to sm /4  (from low speed to 

rated speed) as a step function at st 2 . The command 

value of thrust is N30 . The indirect vector control is based 

on a secondary flux orientation and the command value of 

secondary flux is Wb77.0 . From this figure, the estimated 
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Fig. 8. Linear speed, thrust, phase-A current, primary and secondary flux for low to rated speed maneuver using (a) PI controller (b) 
Fuzzy controller (c) Mechanical model (simulation). 

 
Fig. 9. The operation of MRAS based speed estimator for (a) normal condition (b) noisy condition (c) machine parameter variation (d) 
load force change (simulation). 

 
speed properly follows the real speed for all adaptation 
mechanisms, however, the mechanical model has better 
performance against fuzzy and PI controller especially in the 
transient region. Moreover, despite the step change in linear 
speed, thrust and secondary flux of LIM still follow its 
command values. 

B. Low Speed Operation 

 The main focus of this study is the operation of MRAS 
speed estimator at a very low speed because the range of 
speed is the most critical case for estimators. The speed 

command chosen, sm /2.0 , is 5% its nominal value. 

  In order to evaluate the adaptation mechanisms, two 
indices, based on speed error, are introduced as follows: 

 
dt

l dtvtIndex
0

10001            (28) 

 
simt

td
l dtvtIndex 10002           (29) 

where dt  is the acceleration time of motor with a value of 

0.5s. The first index indicates the transient behavior of 
MRAS speed estimator, whereas the second one considers the  
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Fig. 10. The values of indices. 

 

TABLE II 
THE OVERALL INDEX 

Adaptation 
mechanisms 

Normal 
condition 

Noisy  
condition 

Machine 
parameter 

change 

Load 
force 

change
PI  

Controller 
23.039 70.691 43.435 25.087

Fuzzy 
controller 

31.66 47.713 42.112 34.66 

Mechanical 
model 

21.145 48.346 51.234 30.022

 

steady-state operation. Robustness of the MRAS speed 
estimator with the conventional/proposed adaptation 
mechanisms for LIM is verified at four different modes: 

1) Normal condition  
2) Noisy condition: A white noise is applied in 

measured voltage and current signals. These signals 
are used as input of the secondary flux estimators 
(voltage and current model). This type of noise can 
be caused by thermal changes and their impact on 
electronic carrier.  

3) Machine parameter variation: The secondary 
resistance of LIM is increased by 20% compared 
with normal condition. 

4) Load force change: The load force disturbance is 

lightly increased as a step function, from N0  to 

N30  at .2 st    

The operation of MRAS speed estimator with PI, fuzzy, 
and mechanical adaptation mechanisms in normal condition, 
is shown in Fig. 9(a). From this figure, the mechanical 
adaptation mechanism properly estimates linear speed at 

transient and steady-state operation. Index1 value is 322.0 , 

154.1 , and 594.1  for mechanical adaptation mechanism, PI, 

and fuzzy controller, respectively. One of the significant 
advantages of mechanical adaptation mechanism is the 
improvement of transient operation of the estimator. 

 
Fig. 11. Real-time HIL structure (a) schematic diagram (b) 
experimental layout. 

 
  The behavior of the speed estimator with PI, fuzzy and 
mechanical adaptation mechanisms for noisy condition is 
shown in Fig. 9(b). The PI controller is significantly affected 
by measurement noise, whereas fuzzy and mechanical 
adaptation mechanisms are more robust against noise. In this 
case, Index2 is 69.042, 46.129 and 47.661 for PI, fuzzy and 
mechanical adaptation mechanisms, respectively. 

The real and estimated speed of LIM for PI, fuzzy, and 
mechanical adaptation mechanisms, as well as the speed error, 
when the secondary resistance has 20% variations, is shown 
in Fig. 9(c). The machine parameter variations caused the 
operation of all adaptation mechanisms to deteriorate, but the 
mechanical model is more effective. In this case, Index2 is 
42.414, 41.12 and 49.586 for PI, fuzzy, and mechanical 
adaptation mechanism, respectively. Furthermore, the 
variation rate of Index2, in contrast to normal condition, is 
58%, 26.88% and 48.4% for PI, fuzzy and mechanical 
adaptation mechanisms, respectively; the values show 
thatfuzzy controller has a stable behavior against machine 
parameter variations. 

The operation of MRAS speed estimator, when the load 
force disturbance is applied to LIM, is shown in Fig. 9 (d). A 
summary of results about the MRAS speed estimator 
operation based on PI, fuzzy and mechanical adaptation 
mechanisms at four aforementioned described modes, from 
the viewpoint of transient and steady-state behavior of LIM 
(Index1 and Index2) are shown in Fig. 10. In most 
applications, both transient and steady-state operations of the 
drive system have significant roles in the definition of an 
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(a) (b) (c) 
Fig. 12. The estimated linear speed, estimation error of speed, thrust and phase-a current for load force change by (a) PI (b) fuzzy (c) 
mechanical adaptation mechanisms (Real-time HIL simulation). 

 
objective function. In general, the objective function can be 
obtained from a weighted combination of two mentioned 
indices. In this study, according to equation (27), both indices 
have the same weight in objective function. Therefore, the 
overall index, which is defined as the sum of Index1 and 
Index2, is shown in Table II. 
 

IX. REAL-TIME HARDWARE-IN-THE-LOOP 
SIMULATION 

  Real-time hardware-in-the-loop (HIL) simulation is an 

effective and emerging strategy for advanced testing which 

provides a connection between simulation and real condition. 

In essence, from the viewpoint of accuracy of real condition 

simulation, real-time HIL method is located between 

experimental testing and conventional software-based 

simulation. This approach is widely used in automotive and 

aerospace industries, high-scale power electronic converters, 

and electric machine drive studies, where a piece of system is 

not available or the real system test is devastating [21], [22]. 

  In an HIL simulation, if the physical hardware of studied 

system is not available for experimentation, it can be replaced 

by an emulated hardware in the testing loop. Because of the 

existence of these parts of real system in the control loops 

and considering the real-time behavior of controller, the HIL 

approach increases the authenticity of the simulation. The 

running time of emulated parts must not be more or less than  
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(a) (b) (c) 
Fig. 13. The estimated linear speed and estimation error of speed by PI, fuzzy and mechanical adaptation mechanisms in (a) normal 
condition (b) noisy condition (c) machine parameter change (Real-time HIL simulation). 

 
real-time. In order to obtain a real-time based HIL simulation, 

the Matlab/Real-time windows target toolbox is adopted and 

the performance of MRAS speed estimator with the proposed 

adaptation mechanisms is clarified by this approach. 

The schematic diagram and experimental layout of 
real-time HIL method are shown in Figs. 11 (a) and (b), 
respectively. In the HIL method, the vector control scheme 
with MRAS speed estimator is implemented on an 
ezdspF2812 board. The LIM dynamic model and nonlinear 
model of inverter, described in [23], is simulated on a host 
personal computer (PC). In this scheme, the host PC is used 
as LIM and as an inverter emulator. The real-time control 
commands of DSP board are applied to the host PC as digital 
control signals by using an Advantech PCI 1711 card which 
is located on a PC bus. The analog/digital feedback signals 
are returned to DSP board and subsequently processed to 
obtain next control commands. Moreover, an interface board 
is used to send data from DSP board to oscilloscope. In the 
experimental testing, the host PC (LIM emulator) is replaced 
by LIM and inverter board. Therefore, the real-time property 
of experimental testing remains in the HIL method. 

The estimated linear speed, estimation error of speed, thrust, 
and phase-a current by PI, fuzzy, and mechanical adaptation 
mechanisms at low speed from real-time HIL method are 

shown in Fig. 12. The linear speed command is sm /2.0  

and the load force disturbance is applied to LIM at st 2  

as a step function from N0  to N30 . From this figure, it 

is clear that the estimated linear speed and thrust properly 

track its command values. The estimation error of speed 
shows that mechanical model based adaptation mechanism 
improves the transient behavior of speed estimator for this 
operation condition. Despite the high overshoot of estimated 
speed from mechanical adaptation mechanism, the 
performance in acceleration time of motor is better because 
the transient estimation error of speed is lower. Based on the 
fact that mechanical adaptation mechanism is directly 
designed from a mechanical equation of LIM and some 
mechanical parameters, such as moving mass, the mechanism 
has a great effect on transient behavior of motor. Also, fuzzy 
and PI adaptation mechanisms are roughly similar especially 
from the Index1 standpoint. Hence, results obtained from the 
real-time HIL method confirm the simulation results. In a low 
speed operation, applying the rated load force to LIM is not 
allowed because the motor may be stopped under this force. 
Therefore, a light load force (30 N) is applied to LIM 
whereby the amplitude of phase current is slightly and 
intangibly changed but the frequency of phase current is 
increased to maintain linear speed at its reference value. 

The estimated linear speed and its estimation error in 
normal condition, noisy condition and machine parameter 
change by PI, fuzzy, and mechanical adaptation mechanisms 
are shown in Figs. 13(a) , (b) and (c), respectively. Both 
fuzzy controller and mechanical model effectively improve 
the operation of MRAS speed estimator in a noisy condition, 
where the mechanical model has better transient performance. 
On the other hand, the fuzzy controller has better transient 
and steady-state behavior when secondary resistance of LIM 
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is changed by 20%. Also, by comparing the operations of 
fuzzy controller under different conditions, the robustness of 
the method is observed because the estimation error of the 
fuzzy controller is more stable under normal conditions than 
under any other undesirable conditions. 

 

X. CONCLUSION 

This paper proposes two novel adaptation mechanisms, 

instead of a conventional fixed-gain PI controller, to improve 

the operation of LIM, particularly at very low speeds. The 

first scheme utilizes fuzzy controller, and the second one is 

derived from a mechanical equation of LIM. In the 

preliminary step using the proper dynamic model of LIM, the 

flux estimators based on voltage and current models are 

deduced. Afterward, the estimators are combined to 

constitute MRAS based speed estimator where both models 

estimate the secondary flux in a stationary reference frame. 

The adaptation mechanism provides linear speed using the 

speed tuning signal. The optimum parameters of adaptation 

mechanisms (PI controller, fuzzy controller, and mechanical 

model) are obtained by COA. In order to validate the 

operation of the proposed schemes, a comparative study is 

presented with the following four different modes: normal 

condition, noisy condition, machine parameter variation, and 

load force change. Both simulation and real-time HIL results 

show that the proposed schemes improve the operation of 

MRAS speed estimator at noisy condition and machine 

parameter variations. In this regard, the mechanical model 

strongly enhances the transient behavior of a speed estimator. 

The fuzzy controller is more robust against a variation of 

machine parameters. Furthermore, both fuzzy controller and 

mechanical model improve the operation of speed estimator 

against voltage and current measurement noises. 

 

APPENDIX 

TABLE III 
THE STUDY SYSTEM PARAMETERS	

SLIM 

 parameters 

Optimum parameters of adaptation 

mechanisms by COA 

p  6 PI controller 

][mHLls  
69 5.5pK

 
5.137iK

 

][mHLlr  
0 Fuzzy controller 

][mHLm  
200 0191.01 K  98.52 K  23.03 K

][sR
 

10.6 Mechanical model 

][rR  
32 1000pvK

 
500pfK

 
][KgM  

20   
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