• Title/Summary/Keyword: Linear motion

Search Result 2,024, Processing Time 0.133 seconds

Analysis on the motion characteristics of surface XY aerostatic stage (평면 XY 공기정압 스테이지의 운동특성 분석)

  • 황주호;박천홍;이찬홍;김승우
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.359-362
    • /
    • 2003
  • The aerostatic stage. which is used in semiconductor process, is demanded higher velocity and more precise accuracy for higher productivity and integrated performance. So, in the case of XY stage, H type structure, which is designed two co-linear axis of guide-way, driving force in one surface, has advantage of velocity and accuracy compared to conventional tacked type XY stage. To analyze characteristics of H type aerostatic stage, H type aerostatic surface XY stage is made, which is driven by linear motor and detected position with precise optical linear scale. And, analyze characteristics of motion error, effect of angular motion on positioning accuracy error and effect of simultaneous control on variation of velocity.

  • PDF

A Study on the Fatigue Test and Performance Evaluation for Linear Motion Rolling Bearing (직선운동베어링 성능평가방법의 표준화 및 내구성 시험에 관한 연구)

  • 김태범;김동길;이상조;김익수;이위로;이동규
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.1270-1274
    • /
    • 2003
  • The objective of this paper is to introduce the standard of evaluation methods and fatigue test for linear motion rolling bearing. In particular, attention well be given to the list of evaluation and fatigue results in this paper. The life of a linear motion rolling bearing is given by the length of distance covered between the connection parts before the first evidence of fatigue develops in the material of one of the raceways of rolling elements. The main factors that contribute to fatigue failures include: Number of load cycles experienced; Range of stress experienced in each load cycle; Mean stress experienced in each toad cycle; Presence of local stress concentrations.

  • PDF

Noise Reduction of PPG Signal During Free Movements Using Adaptive SFLC(Scaled Fourier Linear Combiner) (적응 SFLC(Scaled Fourier Linear Combiner)를 이용한 활동 중의 PPG 신호의 잡음 감소)

  • Kim, Sung-Min;Cha, Eun-Jong;Kim, Deok-Won;Yoo, Jae-Ha;Kim, Dong-Yon;Kim, Soo-Chan
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.55 no.3
    • /
    • pp.138-141
    • /
    • 2006
  • Blood flow is one of vital signals related to human physiological information. Photoplethysmograph (PPG) has been used to measure indirectly heart rate, blood oxygen saturation ($SpO_2$), and so on. Because PPG signal is weak and sensitive to motion artifacts, it is very important to continuously obtain stable PPG signal during free movement. In this study, we applied the scaled Fourier linear combiner (SFLC) using both the adaptive filter and FLC to remove effectively the motion artifacts as well as background noise in the real time without additional signal correlated with motion from a accelerometer. The proposed method would be useful to reduce the movement and background noise which are not synchronized with heart rate.

Micropositioning of a Linear Motion Table with Magnetic Bearing Suspension (자기 베어링으로 지지 되는 직선운동 테이블의 초정밀 위치제어에 관한 연구)

  • 김의석;안형준;장인배;한동철
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.10a
    • /
    • pp.466-469
    • /
    • 1995
  • This paper presents a design and performance of the 6 D.O.F linear motion table with a magnetic bearing suspension. The linear positioning of the table with a 150mm stroke is driven by a brushless DC Linear motor and the other attitudes of the stage are controlled by the analog PD controller with magnetic bearing actuators. Each magnetic bearing unit which consists of 3 electromagnets, 3 capacitance probes and 3 backup bearings affords controlled forces by detecting the air gap between the probes and guideways. An integral type capacitance probe amplifier is equipped on the upper plate of the table so that the probe line to the probe amplifier can be shorter therefore the problems due to the stray capacitance and noise can be reduced. Form the pitch-yaw errormeasured by the autocollimator, the vertical and horizont straightness errors of the table are derived that they are maintained below 1.mu. m over 100mm stroke. The positioning accuracy of the linear motion is maintained below 2 .mu. m and the repeatability error is below 1 .mu. m

  • PDF

Development of a Hydrostatic Guideway Driven by the Linear Motor (리니어모터를 이용한 초정밀 유정압안내면 개발)

  • 박천홍;오윤진;황주호;이득우
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.6
    • /
    • pp.139-144
    • /
    • 2004
  • In order to discuss the availability of hydrostatic guideways driven by the coreless linear motor to ultra precision machine tools, a prototype of guideway is designed and tested in this research. A coreless linear DC motor with the continuous force of 156 N and a laser scale with the resolution of 0.01 ${\mu}{\textrm}{m}$ are used as the feeding system. The experiments are performed on the static stuffiness, motion accuracy, positioning accuracy, microstep response and variation of velocity. The guideway has the infinite axial stillness within 50 N of applied load, and by the motion error compensation method using the Active Controlled Capillary, 0.08 ${\mu}{\textrm}{m}$ of linear motion error and 0.1 arcsec of angular motion error are acquired. The guideway also has 0.21 ${\mu}{\textrm}{m}$ of positioning error and 0.09 ${\mu}{\textrm}{m}$ of repeatability, and it shows the stable response against the 0.01 ${\mu}{\textrm}{m}$ resolution step command. The velocity variation of feeding system is less than 0.6 %. From these results, it is confirmed that the hydrostatic guideway driven by the coreless linear motor is very useful fur the ultra precision machine tools.

Developement of Measuring System of Circular Motion Accuracy in Machining Center (머시닝 센터에서 원운동정도 측정시스템의 개발)

  • 김영석
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.4 no.3
    • /
    • pp.58-66
    • /
    • 1995
  • It is very important to test motion accuracy and performance of NC machine tools as they affect that of all other machines machined by them in industry. In this paper, in has become possible to detect errors of linear displacement of radial direction for circular motion test using newly assembled magnetic type of linear scales so called Magnescale ball bar system, and to calculate time interval getting error motion data and revolution angle of circular motion in machining center using tick pulses come out from computer. And a set of error data gotten from test is expressed to a plot by computer treatment and to numerics of error motion by statistical treatment and results of test are compared with those of Renishaw ball bar system.

  • PDF

Development of the Linear Feeder for Uniform Transportation of Grains (균일한 곡물이송을 위한 색채 선별기용 리니어 피더의 개발)

  • Lee, Kyu-Ho;Kim, Sung-Hyun;Chung, Jin-Tai
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.567-570
    • /
    • 2006
  • The purpose of this study is to develope a linear feeder for uniform transportation of grains and to present its design guide line. so, It is measured the displacement of the front and rear aspect of the feeder in time domain. And the measured time signal is represented to the plane coordinate. From this process, it is presented the motion of the feeder in a harmonic excited condition. Also, It is determined whether translation motion or rotation motion. From these course, it is defined the optimized dynamic motion for uniform transportation of grains. It is included a ratio of the displacement and the angle which the dynamic motion between the front and rear aspect of the feeder.

  • PDF

Motion Error Compensation Method for Hydrostatic Tables Using Actively Controlled Capillaries

  • Park Chun Hong;Oh Yoon Jin;Hwang Joo Ho;Lee Deug Woo
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.1
    • /
    • pp.51-58
    • /
    • 2006
  • To compensate for the motion errors in hydrostatic tables, a method to actively control the clearance of a bearing corresponding to the amount of error using actively controlled capillaries is introduced in this paper. The design method for an actively controlled capillary that considers the output rate of a piezo actuator and the amount of error that must be corrected is described. The basic characteristics of such a system were tested, such as the maximum controllable range of the error, micro-step response, and available dynamic bandwidth when the capillary was installed in a hydrostatic table. The tests demonstrated that the maximum controllable range was $2.4\;{\mu}m$, the resolution was 27 nm, and the frequency bandwidth was 5.5 Hz. Simultaneous compensation of the linear and angular motion errors using two actively controlled capillaries was also performed for a hydrostatic table driven by a ballscrew and a DC servomotor. An iterative compensation method was applied to improve the compensation characteristics. Experimental results showed that the linear and angular motion errors were improved to $0.12{\mu}m$ and 0.20 arcsec, which were about $1/15^{th}$ and $1/6^{th}$ of the initial motion errors, respectively. These results confirmed that the proposed compensation method improves the motion accuracy of hydrostatic tables very effectively.

A Study on the Determination of Linear Model and Linear Control of Biped Robot (이족로봇의 선형모델결정과 제어에 관한 연구)

  • Park, In-Gyu;Kim, Jin-Geol
    • Proceedings of the KIEE Conference
    • /
    • 2000.11d
    • /
    • pp.765-768
    • /
    • 2000
  • Linearization of the biped dynamic equations and design of linear controller for the linearized equations are studied in this paper. The biped robot with inverted pendulum type trunk, used to stabilize the dynamic balancing of the biped robot during dynamic walking period, is modelled with 14 DOF and simulated. Despite of well defined linear control theories so far, the linear control methods was limited to the applications for a walking robot, because they have been inherently strong nonlinear properties, such as a modeling parameter uncertainties, external forces as noise, inertial and Coriolis terms by three dimensional modeling and so on. To linearize the nonlinear equations of motion of biped robot on MIMO and time varying linear equations of motion, 1st order Taylor series is used to formulate the linear equation. And a 2nd order numerical perturbation method Is used to approximate partial differential equations. Using the linearized equations of motion, a linear controller is designed by pole placement method with feed forward compensation. Using the obtained linearized equations and linear controller, the continuous walking simulation is performed.

  • PDF

Dynamic Characteristics of Linear Motion Supported by Rolling Ball Bearings (볼 베어링을 사용하는 선형 운동 가이드의 동적 특성)

  • Choi Jae Seok;Yi Yong-sub;Kim Yoon Young;Lee Dong Jin;Lee Sung Jin;Yoo Jeonghoon
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.14 no.9 s.90
    • /
    • pp.868-876
    • /
    • 2004
  • The linear motion(LM) guide using ball bearing has many advantages compared with conventional sliding guides. Therefore, LM guide using ball bearing has been widely used to increase the accuracy of the position of a system. This research investigates dynamic characteristics of LM guide through mainly linear analyses. Linear analysis is accomplished by Lagrange equation and the finite element method. And another trial that performs nonlinear analysis about one mode(bouncing mode) of LM guide from Hertzian contact theory is accomplished in the latter half of this research. Through nonlinear analysis we could observe the softening characteristic due to the Hertzian contact nonlinearity.