• Title/Summary/Keyword: Linear induction motor

Search Result 341, Processing Time 0.053 seconds

A Novel Instantaneous Torque Control Scheme of Brushless Permanent Magnet Motor (브러시리스 영구자석 전동기의 새로운 순시토오크 제어 방법)

  • 최근국;박한웅;박성준;원태현;송달섭;이만형
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.5 no.7
    • /
    • pp.862-867
    • /
    • 1999
  • In general, the realization of high performance brushless permanent magnet motors which are widely used in servo drive is focused on the linear control for ripple-free torque. This is also the main problem that should be solved in all AC motors including induction motor to achieve high performance control, and recent papers deal with this problem. In this paper, the novel optimal excitation scheme of brushless permanent magnet motor producing loss-minimized ripple-free torque based on the d-q-0 reference frame is presented including 3 phase unbalanced condition. The optimized phase current waveforms that are obtained by the proposed method can be a reference values and the motor winding currents are forced to track it by delta modulation technique. As a results, it can be shown that the proposed work can minimize the torque ripple by the optimal excitation current for brushless permanent magnet motor with any arbitrary phase back EMF waveform. Simulation and experimental results prove the validity and practical applications of the proposed control scheme.

  • PDF

Design of Linear Induction Machine Drive and Robust Position Controller based on Integral Variable Structure Scheme for Automatic Picking System (자동피킹 시스템 구동용 선형 유도 모터 드라이브 설계 및 적분형 가변구조 제어 기반의 강인 위치 제어기 설계)

  • Choi, Jung-Hyun;Yoo, Dong Sang;Kim, Kyeong-Hwa
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.23 no.6
    • /
    • pp.511-518
    • /
    • 2013
  • To implement an automatic picking system (APS) in distribution center with high precision and high dynamics, this paper presents a design of a linear induction motor (LIM) drive and robust position controller based on integral variable structure control (IVSC) scheme. The force disturbance as well as the mechanical parameter variation such as the mass and friction coefficient gives a direct influence on the position control performance of APS. To guarantee a robust control performance in the presence of such uncertainty, a robust position controller is designed. A Simulink library is developed for the LIM model from the state equation. Through this model and comparative simulation based on Matlab - Simulink, it is proved that the proposed scheme has a robust control nature and is most suitable for APS.

Research of Performance for the Propulsion System of Maglev Vehicle (도시형 자기부상열차 추진특성에 관한 성능연구)

  • Kim, Bong-Seup;Koh, Joon-Kyun;Park, Do-Young;Kang, Byung-Gwan
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.2342-2347
    • /
    • 2011
  • This paper introduces the performance test of the prototype vehicle, which will be in operation for Urban Maglev Program. While common trains with steel wheels use rotary induction motors for propulsion, maglev trains gain thrust force from linear induction motors maintaining the constant airgap with levitation electromagnets. Therefore, not only the behavior of the linear induction motor should be well understood, but also the way of propulsion that minimizes its effect on the levitation system should be took into account. Performance test procedures of maglev trains are proposed and carried out, and the characteristics of acceleration and deceleration are verified to agree with the design criteria. Tests are mainly performed on the linear section of the test line, and the driving characteristics on the section with a 6‰ incline are examined additionally. As a result, the performance of the prototype vehicle in the reverse operation can satisfy the requirement about the acceleration and deceleration, 4.0$m/s^2$. And, the design modifications of the commercial vehicle and the performance specifications required on the demonstration line are investigated.

  • PDF

A Design of Integral Sliding Mode Suspension Controller to Reject the Disturbance Force Acting on the Suspension System in the Magnetically Levitated Train System (자기부상 열차 시스템에서 추진 장치에서 발생하는 부상 간섭력의 영향을 제거하기 위한 적분형 Sliding Mode 부상 제어기 설계)

  • Lee, Jun-Ho
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.17 no.12
    • /
    • pp.1152-1160
    • /
    • 2007
  • In this paper we deal with a design of integral sliding mode controller to reject the disturbance force acting on the suspension system in the magnetically levitated system which is propelled by the linear induction motor. The control scheme comprises an integral controller which is designed for achieving zero steady-state error under step disturbances, and a sliding mode controller which is designed for enhancing robustness under plant uncertainties. A proper continuous design signal is introduced to overcome the chattering problem. The disturbance force produced by the linear motor is formularized by using a curve fitting of the experimental raw data. Computer simulations show the effectiveness of the designed integral sliding mode controller to reject the disturbance force.

A Six-Phase CRIM Driving CVT using Blend Modified Recurrent Gegenbauer OPNN Control

  • Lin, Chih-Hong
    • Journal of Power Electronics
    • /
    • v.16 no.4
    • /
    • pp.1438-1454
    • /
    • 2016
  • Because the nonlinear and time-varying characteristics of continuously variable transmission (CVT) systems driven by means of a six-phase copper rotor induction motor (CRIM) are unconscious, the control performance obtained for classical linear controllers is disappointing, when compared to more complex, nonlinear control methods. A blend modified recurrent Gegenbauer orthogonal polynomial neural network (OPNN) control system which has the online learning capability to come back to a nonlinear time-varying system, was complied to overcome difficulty in the design of a linear controller for six-phase CRIM driving CVT systems with lumped nonlinear load disturbances. The blend modified recurrent Gegenbauer OPNN control system can carry out examiner control, modified recurrent Gegenbauer OPNN control, and reimbursed control. Additionally, the adaptation law of the online parameters in the modified recurrent Gegenbauer OPNN is established on the Lyapunov stability theorem. The use of an amended artificial bee colony (ABC) optimization technique brought about two optimal learning rates for the parameters, which helped reform convergence. Finally, a comparison of the experimental results of the present study with those of previous studies demonstrates the high control performance of the proposed control scheme.

Fault Diagnosis of Induction Motor based on PCA and Nonlinear Classifier (PCA와 비선형분류기에 기반을 둔 유도전동기의 고장진단)

  • Park, Sung-Moo;Lee, Dae-Jong;Chun, Myung-Geun
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.16 no.1
    • /
    • pp.119-123
    • /
    • 2006
  • In this paper, we propose fault diagnosis of induction motor based on PCA and MLP. To resolve the main drawback of MLP, we calculate the reduced features by PCA in advance. Finally, we develop the diagnosis system based on nonlinear classifier by MLP rather than linear classifier by conventional k-NN. By various experiments, we obtained better classification performance in comparison to the results produced by linear classifier by k-NN.

Multi-Objective Optimization Technique Using Genetic Algorithm and Its Application to Design of Linear Induction Motor (유전알고리즘을 이용한 선형유도전동기의 다중목적 최적설계)

  • Ryu, K.B.;Choi, Y.J.;Kim, C.E.;Kim, S.W.;Park, Y.C.;Kim, J.H.;Im, D.H.
    • Proceedings of the KIEE Conference
    • /
    • 1994.07a
    • /
    • pp.165-167
    • /
    • 1994
  • This paper presents a new method for multiobjective optimization using Genetic Algorithm-Sexual Reproduction Model(SR model). In SR model, each individual consists of chromosome pairs. Sex cells(gametes) are produced through artificial meiosis in which crossover and mutation occur, The proposed method has two selection operators, one, individual selection which selects the individual to fertilize, and the other, gamete selection which makes zygote for offspring production, The two selection schemes are repectively conducted according to different fitness(or objective) function and consequently give a solution which is unbiased to any objectives. We apply the proposed method to optimization of the design parameters of Linear Induction Motor(LIM) and show its effectiveness.

  • PDF

The Measurement of the Dynamics Performance of a Linear Induction Motor (유도형(誘導型) 리니어모터의 동특성(動特性) 계측(計測))

  • Kim, I.K.;Chung, H.G.;Park, C.I.;Park, H.C.;Kim, B.S.;Park, S.C.;Chung, H.H.;Kim, Y.M.;Jang, S.M.
    • Proceedings of the KIEE Conference
    • /
    • 1994.07a
    • /
    • pp.223-225
    • /
    • 1994
  • In these days, it is widely applications of Linear Induction Motor(LIM) that used propulsion system of maglev and LIM Car. elevator. conveyor system, servo system, etc. The calibration method for, performance of LIM is more difficult than static state of one. Then we made testing system to measurement for dynamic performance of LIM and deal with data acquisition board on PC system. We try to get for the data measuring that is thrust force, braking force versus speed(r.p.m. or time) and current, voltage, frequency versus speed.

  • PDF

The Implementation of a Discrete PI Speed Controller for an Induction Motor (유도전동기용 이상 PI형 속도제어기의 구성)

  • 김광배;고명삼
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.35 no.1
    • /
    • pp.26-35
    • /
    • 1986
  • In this paper, non-linear state equations for a 3-phase, 220V, 0.4 KW, squirrel cage induction motor have been derived using the d-q transformation and then these equations have been linearized around an operating point by a small perturbation method. Root loci on the s-plane with repect to the changes of slip S and supply frequency f have been studied. Based on the above results, the derived linear state equations have been augmented to the 6th order, including the output velocity feedback and a discrete PI speed controller. Using the new state equations, stability regions on the Kp-Kl plane have been investigated for slip S and sampling time T. In designing a discrete PI controller, the coefficients Kp and Kl around the normal operating point (220V,1,692rpm,60Hz)have been chosen under the assumptions that each response to a perturbation input of reference speed and load torque be underdamped and dominated by a pair of complex poles. Step responses in the experimental system using an Intel SDK-86 and an optimized PWM inverter show satisfactory results that the maximum overshoots and damped frequency are well coincided with ones from the computer simulation.

  • PDF