• Title/Summary/Keyword: Linear frequency modulation

Search Result 157, Processing Time 0.032 seconds

LFM Radar Implemented in SDR Architecture (SDR 기반의 LFM 레이다 설계 및 구현)

  • Yoon, Jae-Hyuk;Yoo, Seung-Oh;Lee, Dong-Ju;Ye, Sung-Hyuck
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.29 no.4
    • /
    • pp.308-315
    • /
    • 2018
  • In this paper, we present the basic design results for high-resolution radar development at S-band frequency that can precisely measure the miss distance between two targets. The basic system requirement is proposed for the design of a 3.5 GHz linear frequency-modulated (LFM) radar with maximum detection distance and distance resolution of 2 km and 1 m, respectively, and the specifications of each module are determined using the radar equation. Our calculations revealed a signal-to-noise ratio ${\geq}30dB$ with a bandwidth of 150 MHz, transmission power of 43 dBm for the power amplifier, gain of 26 dBi for the antenna, noise figure of 8 dB, and radar cross-section of $1m^2$ at a target distance of 2 km from the radar. Based on the calculation results and the theory and method of LFM radar design, the hardware was designed using software defined radar technology. The results of the subsequent field test are presented that prove that the designed radar system satisfies the requirements.

Performance Evaluation of Fill Rate Quasi-orthogonal STF-OFDM with DAC-ZF Decoder for Four Transmit Antennas MIMO System (4개의 송신 안테나 MIMO 시스템을 위한 DAC-ZF 수신 기법과 결합된 Full Rate 준직교 QOSTF-OFDM 관한 연구)

  • Jin, Ji-Yu;Ryu, Kwan-Woong;Park, Yong-Wan
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.11A
    • /
    • pp.1092-1100
    • /
    • 2006
  • In this paper, we propose a full rate quasi-orthogonal space-time-frequency block coded orthogonal frequency division multiplexing(QOSTF-OFDM) that can achieve full symbol rate with four transmit antennas. Sincr: the proposed QOSTF-OFDM can not achieve full diversity, we use diversity advantage collection with zero forcing (DAC-ZF) decoder to compensate the diversity loss at receive side. At the same frequency efficiency, compared with linear orthogonal space-time codes which can not achieve full rate with four transmit antennas over complex constellations, low level modulation can be employed by proposed scheme due to its full rate, i.e., modulation advantage can be achieved. Due to modulation advantage and collected diversify advantage, the proposed scheme exhibits better BER performance than other orthogonal schemes.

Removal of Inter-pulse Phase Errors for ISAR Imaging Using Rear View Radars of an Automobile (펄스 간 위상오차 보상을 통한 후방 감시 차량용 레이더의 ISAR 영상형성)

  • Kang, Byung-Soo;Kim, Kyung-Tae
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.8
    • /
    • pp.97-103
    • /
    • 2014
  • Signal processing technique of linear frequency modulation-frequency shift keying (LFM-FSK) waveform has been introduced for rear view radars of an automobile. LFM-FSK waveform consists of two sequential stepped frequency waveforms with some frequency offset, and thus, can be used to generate inverse synthetic aperture radar (ISAR) images of rear view target of an automobile. However, ISAR images can often be blurred due to inter-pulse phase errors. To resolve this problem, one-dimensional (1-D) entropies of high resolution range profiles (HRRP) are minimized with the help of particle swarm optimization (PSO). The searching space used in PSO is adaptively adjusted by the use of information on the target's velocity obtained from LFM-FSK waveforms. Simulation results show that the proposed method can generate well-focused ISAR images.

ISAR Imaging Using Rear View Radars of an Automobile (후방 감시 차량용 레이다를 이용한 ISAR 영상 형성)

  • Kang, Byung-Soo;Lee, Hyun-Seok;Lee, Seung-Jae;Kang, Min-Suk;Kim, Kyung-Tae
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.25 no.2
    • /
    • pp.245-250
    • /
    • 2014
  • This paper introduces the inverse synthetic aperture radar(ISAR) imaging technique for rear view target of an automobile, which uses both linear frequency modulation-frequency shift keying(LFM-FSK) waveform and monopulse tracking. LFM-FSK waveform consists of two sequential stepped frequency waveforms with some frequency offset, and thus, can be used to generate ISAR images of rear view target of an automobile. However, ISAR images can often be blurred due to non-uniform change rate of relative aspect angle between radar and target. In order to address this problem, one-dimensional(1-D) Lagrange interpolation technique in conjunction with angle information obtained from the monopulse tracking is applied to generate uniform data across the radar's aspect angle. Simulation results show that the proposed method can provide focused ISAR images.

Joint Transmitter and Receiver Optimization for Improper-Complex Second-Order Stationary Data Sequence

  • Yeo, Jeongho;Cho, Joon Ho;Lehnert, James S.
    • Journal of Communications and Networks
    • /
    • v.17 no.1
    • /
    • pp.1-11
    • /
    • 2015
  • In this paper, the transmission of an improper-complex second-order stationary data sequence is considered over a strictly band-limited frequency-selective channel. It is assumed that the transmitter employs linear modulation and that the channel output is corrupted by additive proper-complex cyclostationary noise. Under the average transmit power constraint, the problem of minimizing the mean-squared error at the output of a widely linear receiver is formulated in the time domain to find the optimal transmit and receive waveforms. The optimization problem is converted into a frequency-domain problem by using the vectorized Fourier transform technique and put into the form of a double minimization. First, the widely linear receiver is optimized that requires, unlike the linear receiver design with only one waveform, the design of two receive waveforms. Then, the optimal transmit waveform for the linear modulator is derived by introducing the notion of the impropriety frequency function of a discrete-time random process and by performing a line search combined with an iterative algorithm. The optimal solution shows that both the periodic spectral correlation due to the cyclostationarity and the symmetric spectral correlation about the origin due to the impropriety are well exploited.

A Frequency Synthesizer for Ka band compact Radar using DDS (DDS를 이용한 Ka 대역 소형 레이다용 주파수합성기)

  • An, Se-Hwan;Lee, Man-Hee;Kim, Hong-Rak;Kwon, Jun-Beom;Choi, Young-Rak;Kim, Jong-Ho
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.17 no.6
    • /
    • pp.51-57
    • /
    • 2017
  • In this paper, we designed a frequency synthesizer using DDS (Direct Digital Synthesizer) for Ka-band compact Radar. DDS is applied to generate various waveform and to cover high-speed frequency sweep. In order to reduce size, waveform generator and Ka band frequency up-converter are integrated in one module. Proposed frequency synthesizer provides LFM(Linear Frequency Modulation) waveform and Phase modulated FMCW (Frequency Modulation Continuous Wave) waveform. It is observed that fabricated synthesizer performs $0.191{\mu}sec$ frequency switching time and -89.16 dBc/Hz phase noise at offset 1 kHz.

Effects of Three Recumbent Postures on Autonomic Nervous System in Patients with Coronary Artery Disease

  • Kim, Wuon-Shik;Hwang, In-Kyoung;Choi, Hyoung-Min
    • International Journal of Vascular Biomedical Engineering
    • /
    • v.3 no.2
    • /
    • pp.10-16
    • /
    • 2005
  • Because patients with coronary artery disease (CAD) have depressed vagal modulation and the mortality risk from acute myocardial infarction is lower in patients with higher vagal modulation, methods that can increase vagal modulation are desirable in patients with CAD. We intended to inspect the effect of recumbent posture on vagal modulation. By using angiography, 33 patients with abnormal (CAD group) and 33 patients with normal coronary arteries (control group) were studied. The nonlinear as well as the linear characteristics of heart rate variability (HRV) were analyzed on these patients in three recumbent postures: namely, the supine, right lateral decubitus, and left lateral decubitus postures. The lower the normalized high-frequency power (nHF) in the supine or left lateral decubitus posture, the higher the increase in the nHF when the posture was changed from supine or left lateral decubitus to right lateral decubitus in both groups of patients. Right lateral decubitus posture can lead to the highest vagal modulation and the lowest sympathetic modulation among the three recumbent postures in both normal and patients with CAD. Therefore, the right lateral decubitus posture can be used as an effective physiologic vagal enhancer in patients with CAD.

  • PDF

Several systems for 1Giga bit Modem

  • Park, Jin-Sung;Kang, Seong-Ho;Eom, Ki-Whan;Sosuke, Onodera;Yoichi, Sato
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.1749-1753
    • /
    • 2003
  • We proposed several systems for 1Giga bit Modem. The first, Binary ASK(Amplitude Shift Keying) system has a high speed shutter transmitter and no IF(Intermediate Frequency) receiver only by symbol synchronization. The advantage of proposed system is that circuitry is very simple without IF process. The disadvantage of proposed system are that line spectrum occurs interference to other channels, and enhancement to 4-level system is impossible due to its large SNR degradation. The second, Binary phase modulation system has a high speed shutter transmitter and IF-VCO(IF-Voltage Controlled Oscillator) control by base-band phase rotation. Polarity of shutter window is changed by the binary data. The window should be narrow same as above ASK. The advantage of proposed system is which error rate performance is superior. The disadvantage of proposed system are that Circuitry is more complex, narrow pull-in range of receiver caused by VCO and spectrum divergence by the non-linear amplifier. The third, 4-QAM(Quadrature Amplitude Modulation)system has a nyquist pulse transmitter and IF-VCO control by symbol clock. The advantage of proposed system are that signal frequency band is a half of 1GHz, reliable pull-in of VCO and possibility of double speed transmission(2Gbps) by keeping 1GHz frequency-band. The disadvantage of proposed system are that circuit complexity of pulse shaping and spectrum divergence by the non-linear amplifier.

  • PDF

A Study on Multi-Site Radar Operations Based on LFM Signal (LFM 신호에 기반한 다중국소 레이더 운영에 관한 연구)

  • Suh, Kyoung-Whoan
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.15 no.3
    • /
    • pp.91-98
    • /
    • 2015
  • As one of solutions to obtain efficient use of limited spectrum resource, we suggest a methodology for the co-channel multi-site radar operations with a shifted linear frequency modulation (SLFM) based on GPS clock. The proposed algorithm is that we find a candidate set of SLFM signals with the minimum acceptable level of the correlation from the cross-correlation characteristics among selected SLFM signals. To verify the proposed methodology, numerical analysis has been accomplished for several radars operating in the same channel with a sawtooth or triangle LFM signal. The computational results of detected distances as well as range profiles are also examined for interference, noise, and algorithm limitation including the error of clock synchronization.

A Two-Point Modulation Spread-Spectrum Clock Generator With FIR-Embedded Binary Phase Detection and 1-Bit High-Order ΔΣ Modulation

  • Xu, Ni;Shen, Yiyu;Lv, Sitao;Liu, Han;Rhee, Woogeun;Wang, Zhihua
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.16 no.4
    • /
    • pp.425-435
    • /
    • 2016
  • This paper describes a spread-spectrum clock generation method by utilizing a ${\Delta}{\Sigma}$ digital PLL (DPLL) which is solely based on binary phase detection and does not require a linear time-to-digital converter (TDC) or other linear digital-to-time converter (DTC) circuitry. A 1-bit high-order ${\Delta}{\Sigma}$ modulator and a hybrid finite-impulse response (FIR) filter are employed to mitigate the phase-folding problem caused by the nonlinearity of the bang-bang phase detector (BBPD). The ${\Delta}{\Sigma}$ DPLL employs a two-point modulation technique to further enhance linearity at the turning point of a triangular modulation profile. We also show that the two-point modulation is useful for the BBPLL to improve the spread-spectrum performance by suppressing the frequency deviation at the input of the BBPD, thus reducing the peak phase deviation. Based on the proposed architecture, a 3.2 GHz spread-spectrum clock generator (SSCG) is implemented in 65 nm CMOS. Experimental results show that the proposed SSCG achieves peak power reductions of 18.5 dB and 11 dB with 10 kHz and 100 kHz resolution bandwidths respectively, consuming 6.34 mW from a 1 V supply.