• Title/Summary/Keyword: Linear formula

Search Result 451, Processing Time 0.027 seconds

A Study on the Least Cost Ration Formulation by Linear Programming -For the multi-mix problem - (선형계획법에 의한 최소비용사료 배합에 관한 연구)

  • 민병준
    • Korean Journal of Poultry Science
    • /
    • v.8 no.1
    • /
    • pp.25-30
    • /
    • 1981
  • This study was conducted to find the method that the least-cost formula can be determined thus allowing a better keeping of raw material supplies under the constraints having to be used some raw materials that are either in limited supply or for other reason in restricted use. In this study, it was considered that three kinds of feed were produced under limited supply of six kinds of raw materials, and data for the analysis were collected from a feed mill in southern part of Korea. According to the result of this study, it was proved better to determine the least-cost formula as the multi-mix problem than as the simple least-cost problem when more than two kinds of feed were produced wilt limited supply of raw materials.

  • PDF

Construction and Application of Experimental Formula for Nonlinear Behavior of Ferroelectric Ceramics Switched by Electric Field at Room Temperature during Temperature Rise

  • Ji, Dae Won;Kim, Sang-Joo
    • Journal of the Korean Ceramic Society
    • /
    • v.55 no.1
    • /
    • pp.67-73
    • /
    • 2018
  • A poled lead zirconate titanate (PZT) cube specimen that is switched by an electric field at room temperature is subject to temperature increase. Changes in polarization and thermal expansion coefficients are measured during temperature rise. The measured data are analyzed to obtain changes in pyroelectric coefficient and strain during temperature change. Empirical formulae are developed using linear or quadratic curve fitting to the data. The nonlinear behavior of the materials during temperature increase is predicted using the developed formulae. It is shown that the calculation results can be compared successfully with the measured values, which proves the accuracy and reliability of the developed formulae for the nonlinear behavior of the materials during temperature changes.

An Effect of Load and Genders on Postural Stability (취급자재의 무게와 성별이 균형 능력에 미치는 영향)

  • Yang, Byoung-Hak
    • Journal of the Korea Safety Management & Science
    • /
    • v.12 no.3
    • /
    • pp.101-106
    • /
    • 2010
  • The purposes of this paper are to investigate an effect of weight of material and gender on postural stability and to introduce formulas for those. There were five levels of weights 0, 9, 18, 27 and 36 kg, and two levels of genders were conducted. Eight male and five female subjects participated in this experiment, ten tests were performed for each level of weights to measure the postural stability by using the stability platform. The effect of the genders and the load on the postural stability were statistically analysed by the two way ANOVA test and the regression analysis. The ANOVA test showed that the effect of weights was statistically significant on postural stability to the both male and female subjects. And the postural stability of female subjects was better than that of male subjects. A linear regression formula for the balancing time and the load and a formula for the reduction rate postural stability and the relative load were introduced by the regression analysis.

Application of Multiple Regression Method to Prediction of Noise Level in Ship Cabins (회귀분석법에 의한 선박 소음 예측에 관한 연구)

  • Dong-Hae Kim;Kyoon-Yang Chung
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.31 no.3
    • /
    • pp.112-118
    • /
    • 1994
  • In this paper, statistical approach to prediction of A-weighted noise level in ship cabins. based on multiple linear regression analysis, is conducted. The best regression formula is composed of seven parameters of the deadweight, the type of ship, the location of engines and cabins, the type of deckhouse and the propeller skew angle. Verification work was carried out with other 210 cabins' data in 6 ships. As a result, the formula ensures the accuracy of 3 dB(A) in 77 % of cases.

  • PDF

Moment of inertia of liquid in a tank

  • Lee, Gyeong Joong
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.6 no.1
    • /
    • pp.132-150
    • /
    • 2014
  • In this study, the inertial properties of fully filled liquid in a tank were studied based on the potential theory. The analytic solution was obtained for the rectangular tank, and the numerical solutions using Green's 2nd identity were obtained for other shapes. The inertia of liquid behaves like solid in recti-linear acceleration. But under rotational acceleration, the moment of inertia of liquid becomes small compared to that of solid. The shapes of tank investigated in this study were ellipse, rectangle, hexagon, and octagon with various aspect ratios. The numerical solutions were compared with analytic solution, and an ad hoc semi-analytical approximate formula is proposed herein and this formula gives very good predictions for the moment of inertia of the liquid in a tank of several different geometrical shapes. The results of this study will be useful in analyzing of the motion of LNG/LPG tanker, liquid cargo ship, and damaged ship.

Practical formula for determining peak acceleration of footbridge under walking considering human-structure interaction

  • Cao, Liang;Zhou, Hailei;Chen, Y. Frank
    • Structural Engineering and Mechanics
    • /
    • v.83 no.6
    • /
    • pp.729-744
    • /
    • 2022
  • In this paper, an analytical formulation is proposed to predict the vertical vibration response due to the pedestrian walking on a footbridge considering the human-structure interaction, where the footbridge and pedestrian are represented by the Euler beam and linear oscillator model, respectively. The derived coupled equation of motion is a nonlinear fourth-order partial differential equation. An uncoupled solution strategy based on the combined weighted residual and perturbation method) is proposed to reduce the tedious computation, which allows the separate integration between the bridge and pedestrian subsystems. The theoretical study demonstrates that the pedestrian subsystem can be treated as a structural system with added mass, damping, and stiffness. The analysis procedure is then applied to a case study under the conditions of single pedestrian and multi pedestrians, and the results are validated and compared numerically. For convenient vibration design of a footbridge, the simplified peak acceleration formula and the idea of decoupling problem are thus proposed.

Rotor High-Speed Noise Prediction with a Combined CFD-Kirchhoff Method (CFD와 Kirchhoff 방법의 결합을 이용한 로터의 고속 충격소음 해석)

  • 이수갑;윤태석
    • Journal of KSNVE
    • /
    • v.6 no.5
    • /
    • pp.607-616
    • /
    • 1996
  • A combined computational fluid dynamics(CFD)-Kirchhoff method is presented for predicting high-speed impulsive noise generated by a hovering blade. Two types of Kirchhoff integral formula are used; one for the classical linear Kirchhoff formulation and the other for the nonlinear Kirchhoff formulation. An Euler finite difference solver is solved first to obtain the flow field close to the blade, and then this flow field is used as an input to a Kirchhoff formulation to predict the acoustic far-field. These formulas are used at Mach numbers of 0.90 and 0.95 to investigate the effectiveness of the linear and nonlinear Kirchhoff formulas for delocalized flow. During these calculiations, the retarded time equation is also carefully examined, in particular, for the cases of the control surface located outside of the sonic cylinder, where multiple roots are obtained. Predicted results of acoustic far-field pressure with the linear Kirchhoff formulation agree well with experimental data when the control surface is at the certain location(R=1.46), but the correlation is getting worse before or after this specific location of the control surface due to the delocalized nonlinear aerodynamic flow field. Calculations based on the nonlinear Kirchhoff equation using a linear sonic cylinder as a control surface show a reasonable agreement with experimental data in negative amplitudes for both tip Mach numbers of 0.90 and 0.95, except some computational integration problems over a shock. This concliudes that a nonlinear formulation is necessary if the control surface is close to the blade and the flow is delocalized.

  • PDF

A Study on Color Management of Input and Output Device in Electronic Publishing (I) (전자출판에서 입.출력 장치의 컬러 관리에 관한 연구 (I))

  • Cho, Ga-Ram;Kim, Jae-Hae;Koo, Chul-Whoi
    • Journal of the Korean Graphic Arts Communication Society
    • /
    • v.25 no.1
    • /
    • pp.11-26
    • /
    • 2007
  • In this paper, an experiment was done where the input device used the linear multiple regression and the sRGB color space to perform a color transformation. The output device used the GOG, GOGO and sRGB for the color transformation. After the input device underwent a color transformation, a $3\;{\times}\;20\;size$ matrix was used in a linear multiple regression and the scanner's color representation of scanner was better than a digital still camera's color representation. When using the sRGB color space, the original copy and the output copy had a color difference of 11. Therefore it was more efficient to use the linear multiple regression method than using the sRGB color space. After the input device underwent a color transformation, the additivity of the LCD monitor's R, G and B signal value improved and therefore the error in the linear formula transformation decreased. From this change, the LCD monitor with the GOG model applied to the color transformation became better than LCD monitors with other models applied to the color transformation. Also, the color difference varied more than 11 from the original target in CRT and LCD monitors when a sRGB color transformation was done in restricted conditions.

  • PDF

CONDITION NUMBER FOR THE W- WEIGHTED DRAZIN INVERSE AND ITS APPLICATIONS IN THE SOLUTION OF RECTANGULAR LINEAR SYSTEM

  • CUI XIAOKE;DIAO HUAIAN
    • Journal of applied mathematics & informatics
    • /
    • v.20 no.1_2
    • /
    • pp.35-59
    • /
    • 2006
  • In this paper, we generalized the results of [23, 26], and get the results of the condition number of the W-weighted Drazin-inverse solution of linear system W AW\chi=b, where A is an $m{\times}n$ rank-deficient matrix and the index of A W is $k_1$, the index of W A is $k_2$, b is a real vector of size n in the range of $(WA)^{k_2}$, $\chi$ is a real vector of size m in the range of $(AW)^{k_1}$. Let $\alpha$ and $\beta$ be two positive real numbers, when we consider the weighted Frobenius norm $\|[{\alpha}W\;AW,\;{\beta}b]\|$(equation omitted) on the data we get the formula of condition number of the W-weighted Drazin-inverse solution of linear system. For the normwise condition number, the sensitivity of the relative condition number itself is studied, and the componentwise perturbation is also investigated.

Analytical Formula for the Equivalent Mohr-Coulomb Strength Parameters Best-fitting the Generalized Hoek-Brown Criterion in an Arbitrary Range of Minor Principal Stress (임의 최소주응력 구간에서 일반화된 Hoek-Brown 파괴기준식을 최적 근사하는 등가 Mohr-Coulomb 강도정수 계산식)

  • Lee, Youn-Kyou
    • Tunnel and Underground Space
    • /
    • v.29 no.3
    • /
    • pp.172-183
    • /
    • 2019
  • The generalized Hoek-Brown (GHB) failure criterion developed by Hoek et al. (2002) is a nonlinear function which defines a stress condition at failure of rock mass. The relevant strength parameter values are systematically determined using the GSI value. Since GSI index is a value quantifying the condition of in-situ rock mass, the GHB criterion is a practical failure condition which can take into the consideration of in-situ rock mass quality. Considering that most rock mechanics engineers are familiar with the linear Mohr-Coulomb criterion and that many rock engineering softwares incorporate Mohr-Coulomb criterion, the equations for the equivalent friction angle and cohesion were also proposed along with the release of the GHB criterion. The proposed equations, however, fix the lower limit of the minor principal stress range, where the linear best-fitting is performed, with the tensile strength of the rock mass. Therefore, if the tensile stress is not expected in the domain of analysis, the calculated equivalent friction angle and cohesion based on the equations in Hoek et al. (2002) could be less accurate. In order to overcome this disadvantage of the existing equations for equivalent friction angle and cohesion, this study proposes the analytical formula which can calculate optimal equivalent friction angle and cohesion in any minor principal stress interval, and verified the accuracy of the derived formula.