• Title/Summary/Keyword: Linear assignment method

Search Result 94, Processing Time 0.029 seconds

SIMULATED ANNEALING FOR LINEAR SCHEDULING PROJECTS WITH MULTIPLE RESOURCE CONSTRAINTS

  • C.I. Yen
    • International conference on construction engineering and project management
    • /
    • 2007.03a
    • /
    • pp.530-539
    • /
    • 2007
  • Many construction projects such as highways, pipelines, tunnels, and high-rise buildings typically contain repetitive activities. Research has shown that the Critical Path Method (CPM) is not efficient in scheduling linear construction projects that involve repetitive tasks. Linear Scheduling Method (LSM) is one of the techniques that have been developed since 1960s to handle projects with repetitive characteristics. Although LSM has been regarded as a technique that provides significant advantages over CPM in linear construction projects, it has been mainly viewed as a graphical complement to the CPM. Studies of scheduling linear construction projects with resource consideration are rare, especially with multiple resource constraints. The objective of this proposed research is to explore a resource assignment mechanism, which assigns multiple critical resources to all activities to minimize the project duration while satisfying the activities precedence relationship and resource limitations. Resources assigned to an activity are allowed to vary within a range at different stations, which is a combinatorial optimization problem in nature. A heuristic multiple resource allocation algorithm is explored to obtain a feasible initial solution. The Simulated Annealing search algorithm is then utilized to improve the initial solution for obtaining near-optimum solutions. A housing example is studied to demonstrate the resource assignment mechanism.

  • PDF

Direction Assignment of Left Eigenvector in Linear MIMO System (선형 다변수 입출력 시스템에서 좌 고유벡터의 방향 지정)

  • Kim, Sung-Hyun;Yang, Hyun-Seok
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.14 no.3
    • /
    • pp.226-231
    • /
    • 2008
  • In this paper, we propose novel eigenstructure assignment method in full-state feedback for linear time-invariant MIMO system such that directions of some left eigenvectors are exactly assigned to the desired directions. It is required to consider the direction of left eigenvector in designing eigenstructure of closed-loop system, because the direction of left eigenvector has influence over excitation by associated input variables in time-domain response. Exact direction of a left eigenvector can be achieved by assigning proper right eigenvector set satisfying the conditions of the presented theorem based on Moore's theorem and the orthogonality of left and right eigenvector. The right eigenvector should reside in the subspace given by the desired eigenvalue, which restrict a number of designable left eigenvector. For the two cases in which desired eigenvalues are all real and contain complex number, design freedom of designable left eigenvector are given.

Pole-Zero Assignment Self-Tuning Controller Using Neural Network (신경회로망 기법을 이용한 극-영점 배치 자기 동조 제어기)

  • 구영모;이윤섭;장석호;우광방
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.40 no.2
    • /
    • pp.183-191
    • /
    • 1991
  • This paper develops a pole-zero assignment self-tuning regulator utilizing the method of a neural network in the plant parameter estimation. An approach to parameter estimation of the plant with a Hopfield neural network model is proposed, and the control characteristics of the plant are evaluated by means of a simulation for a second-order linear time invariant plant. The results obtained with those of Exponentially Weighted Recursive Least Squares(EWRLS) method are also shown.

An Empirical Analysis of Sino-Russia Foreign Trade Turnover Time Series: Based on EMD-LSTM Model

  • GUO, Jian;WU, Kai Kun;YE, Lyu;CHENG, Shi Chao;LIU, Wen Jing;YANG, Jing Ying
    • The Journal of Asian Finance, Economics and Business
    • /
    • v.9 no.10
    • /
    • pp.159-168
    • /
    • 2022
  • The time series of foreign trade turnover is complex and variable and contains linear and nonlinear information. This paper proposes preprocessing the dataset by the EMD algorithm and combining the linear prediction advantage of the SARIMA model with the nonlinear prediction advantage of the EMD-LSTM model to construct the SARIMA-EMD-LSTM hybrid model by the weight assignment method. The forecast performance of the single models is compared with that of the hybrid models by using MAPE and RMSE metrics. Furthermore, it is confirmed that the weight assignment approach can benefit from the hybrid models. The results show that the SARIMA model can capture the fluctuation pattern of the time series, but it cannot effectively predict the sudden drop in foreign trade turnover caused by special reasons and has the lowest accuracy in long-term forecasting. The EMD-LSTM model successfully resolves the hysteresis phenomenon and has the highest forecast accuracy of all models, with a MAPE of 7.4304%. Therefore, it can be effectively used to forecast the Sino-Russia foreign trade turnover time series post-epidemic. Hybrid models cannot take advantage of SARIMA linear and LSTM nonlinear forecasting, so weight assignment is not the best method to construct hybrid models.

Robust control for linear systems with structured uncertainty (구조적 불확실성을 갖는 프로세스의 robust control)

  • 김영철;박용식;양흥석
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1989.10a
    • /
    • pp.457-460
    • /
    • 1989
  • This note considers the problems of finding a pole assignment controller for a plant with parameter perturbations. Based on Kharitonov's theorem and its generalized results, we propose a design method of controller using linear transformations such that it guarantees the desired damping ratio.

  • PDF

Covariance Controller Design for Linear SISO Systems

  • Kim, Ho-Chan;Oh, Seong-Bo;Ko, Bong-Woon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.54.1-54
    • /
    • 2001
  • In this paper, an alternate method for state-covariance assignment for SISO(single input singe output) linear systems is proposed. This method is based on the inverse solution of the Lyapunov matrix equation and the resulting formulas are similar in structure to the formulas for pole placement. Further, the set of all assignable covariance matrices to a SISO linear system is also characterized.

  • PDF

Performance Analysis of Data Association Applied Frequency Weighting in 3-Passive Linear Array Sonars (주파수 가중치를 적용한 3조의 수동 선배열 소나 센서의 정보 연관 성능 분석)

  • 구본화;윤제한;홍우영;고한석
    • The Journal of the Acoustical Society of Korea
    • /
    • v.23 no.2
    • /
    • pp.109-116
    • /
    • 2004
  • This paper deals with data association using 3 sets of passive linear array sonars (PUS) geometrically positioned in a Y-shaped configuration, but fixed in an underwater environment. The data association problem is directly transformed into a 3-D assignment problem, which is known to be NP-hard. For generic passive sensors, it can be sotted using conventional algorithms, while it in PLAS becomes a formidable task due to the presence of bearing ambiguity. In particular, we proposed data association method robust to bearing measurements errors by incorporating frequency information and analyze a region of ghost problem by geometrical relation PUS and target. We analyzed the effectiveness of the proposed method by representative simulation in multi-target.

Optimal Weapon-Target Assignment Algorithm for Closed-In Weapon Systems Considering Variable Burst Time (가변 연속사격 시간을 고려한 근접 방어 시스템의 최적 무장 할당 알고리듬)

  • Kim, Bosoek;Lee, Chang-Hun;Tahk, Min-Jea;Kim, Da-Sol;Kim, Sang-Hyun;Lee, Hyun-Seok
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.49 no.5
    • /
    • pp.365-372
    • /
    • 2021
  • This paper deals with an optimal Weapon-Target Assignment (WTA) algorithm for Closed-In Weapon Systems (CIWS), considering variable burst time. In this study, the WTA problem for CIWS is formulated based on Mixed Integer Linear Programming (MILP). Unlike the previous study assuming that the burst time is fixed regardless of the engagement range, the proposed method utilizes the variable burst time based on the kill probability according to the engagement range. Thus, the proposed method can reflect a more realistic engagement situation and reduce the reaction time of CIWS against targets, compared to the existing method. In this paper, we first reformulate the existing MILP-based WTA problem to accommodate the variable burst Time. The proposed method is then validated through numerical simulations with the help of a commercial optimization tool.

An Optimal Surveillance Units Assignment Model Using Integer Programming (정수계획법을 이용한 최적 감시장비 배치모형에 관한 연구)

  • 서성철;정규련
    • Journal of the military operations research society of Korea
    • /
    • v.23 no.1
    • /
    • pp.14-24
    • /
    • 1997
  • This study is to develop an optimal surveillance units assignment model in order to obtain the maximized surveillance efficiency with the limited surveillance units. There are many mathematical models which deal with problems to assign weapons such as aircrafts, missiles and guns to targets. These models minimize the lost required to attack, the threat forecast from the enemy, or both of them. However, a problem of the efficient assignment of surveillance units is not studied yet, nevertbless it is important in the battlefield surveillance system. This paper is concerned with the development of the optimal surveillance units assignment model using integer programming. An optimal integer solution of the model can be obtained by using linear programming and branch and bound method.

  • PDF

A study on computer algorithm for pole assignment in multivariable control systems (다변수 제어계통의 극점배치를 위한 컴퓨터 앨고리즘에 관한 연구)

  • 한만춘;장성환
    • 전기의세계
    • /
    • v.31 no.4
    • /
    • pp.296-302
    • /
    • 1982
  • The computer algorithm and program are developed to obtain the Luenberger Canonical form and the transform matrices for linear time invariant multivariable control systems. The model controller of an eigth order system, which assigns the modes of the multivariable control systems and closed-loop matrices are computed numerically by the developed programs. It is shown that the computed results coincide with the Luenberger's and Kalman's method. The gain of the model controller has varied from 10$^{-3}$ to 10$^{5}$ by the modes assignment of the open-loop system.

  • PDF