• 제목/요약/키워드: Linear and multiple regression

검색결과 1,747건 처리시간 0.022초

NB-IoT 기술에서 Multiple Linear Regression Model을 활용하여 OTDOA 기반 포지셔닝 정확도 최적화 (Optimize OTDOA-based Positioning Accuracy by Utilizing Multiple Linear Regression Model under NB-IoT Technology)

  • 판이첸;김재수
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2020년도 제62차 하계학술대회논문집 28권2호
    • /
    • pp.139-142
    • /
    • 2020
  • NB-IoT(Narrow Band Internet of Things) is an emerging LPWAN(Low Power Wide Area Network) radio technology. NB-IoT has many advantages like low power, low cost, and high coverage. However low bandwidth and low sampling rates also lead to poor positioning accuracy. This paper proposed a solution to optimize positioning accuracy under the OTDOA(Observed Time Difference of Arrival) approach by utilizing MLR(Multiple Linear Regression) models. Through the MLR model to predict the influence degree of weather(temperature, humidity, light intensity and air pressure) on the arrival time of signal transmission to improve the measurement accuracy. The improvement of measurement accuracy can greatly improve IoT applications based on NB-IoT.

  • PDF

로터리 사고발생 위치별 사고모형 개발 (Developing Accident Models of Rotary by Accident Occurrence Location)

  • 나희;박병호
    • 한국도로학회논문집
    • /
    • 제14권4호
    • /
    • pp.83-91
    • /
    • 2012
  • PURPOSES : This study deals with Rotary by Accident Occurrence Location. The purpose of this study is to develop the accident models of rotary by location. METHODS : In pursuing the above, this study gives particular attentions to developing the appropriate models using multiple linear, Poisson and negative binomial regression models and statistical analysis tools. RESULTS : First, four multiple linear regression models which are statistically significant(their $R^2$ values are 0.781, 0.300, 0.784 and 0.644 respectively) are developed, and four Poisson regression models which are statistically significant(their ${\rho}^2$ values are 0.407, 0.306, 0.378 and 0.366 respectively) are developed. Second, the test results of fitness using RMSE, %RMSE, MPB and MAD show that Poisson regression model in the case of circulatory roadway, pedestrian crossing and others and multiple linear regression model in the case of entry/exit sections are appropriate to the given data. Finally, the common variable that affects to the accident is adopted to be traffic volume. CONCLUSIONS : 8 models which are all statistically significant are developed, and the common and specific variables that are related to the models are derived.

Multiple linear regression and fuzzy linear regression based assessment of postseismic structural damage indices

  • Fani I. Gkountakou;Anaxagoras Elenas;Basil K. Papadopoulos
    • Earthquakes and Structures
    • /
    • 제24권6호
    • /
    • pp.429-437
    • /
    • 2023
  • This paper studied the prediction of structural damage indices to buildings after earthquake occurrence using Multiple Linear Regression (MLR) and Fuzzy Linear Regression (FLR) methods. Particularly, the structural damage degree, represented by the Maximum Inter Story Drift Ratio (MISDR), is an essential factor that ensures the safety of the building. Thus, the seismic response of a steel building was evaluated, utilizing 65 seismic accelerograms as input signals. Among the several response quantities, the focus is on the MISDR, which expresses the postseismic damage status. Using MLR and FLR methods and comparing the outputs with the corresponding evaluated by nonlinear dynamic analyses, it was concluded that the FLR method had the most accurate prediction results in contrast to the MLR method. A blind prediction applying a set of another 10 artificial accelerograms also examined the model's effectiveness. The results revealed that the use of the FLR method had the smallest average percentage error level for every set of applied accelerograms, and thus it is a suitable modeling tool in earthquake engineering.

중소하천유역의 임계지속시간 결정에 관한 연구 (Study on the Critical Storm Duration Decision of the Rivers Basin)

  • 안승섭;이효정;정도준
    • 한국환경과학회지
    • /
    • 제16권11호
    • /
    • pp.1301-1312
    • /
    • 2007
  • The objective of this study is to propose a critical storm duration forecasting model on storm runoff in small river basin. The critical storm duration data of 582 sub-basin which introduced disaster impact assessment report on the National Emergency Management Agency during the period from 2004 to 2007 were collected, analyzed and studied. The stepwise multiple regression method are used to establish critical storm duration forecasting models(Linear and exponential type). The results of multiple regression analysis discriminated the linear type more than exponential type. The results of multiple linear regression analysis between the critical storm duration and 5 basin characteristics parameters such as basin area, main stream length, average slope of main stream, shape factor and CN showed more than 0.75 of correlation in terms of the multi correlation coefficient.

비교차 제약식을 이용한 다중 선형 분위수 회귀모형에 관한 비교연구 (A comparison study of multiple linear quantile regression using non-crossing constraints)

  • 방성완;신승준
    • 응용통계연구
    • /
    • 제29권5호
    • /
    • pp.773-786
    • /
    • 2016
  • 분위수 회귀는 반응변수의 조건부 분위수 함수를 추정함으로써 반응변수와 예측변수의 관계에 대한 포괄적인 정보를 제공한다. 그러나 여러 개의 분위수 함수를 개별적으로 추정하게 되면 이들이 서로 교차할 가능성이 있으며, 이러한 분위수 함수의 교차(quantile crossing) 현상 분위수의 이론적 기본 특성에 위배된다. 본 논문에서는 다중 비교차 분위수 함수의 추정의 대표적인 방법들의 특성을 적합식과 계산 알고리즘의 측면에서 살펴보고, 모의실험과 실제 자료 분석을 통해 그 성능을 비교하였다.

Multiple Structural Change-Point Estimation in Linear Regression Models

  • Kim, Jae-Hee
    • Communications for Statistical Applications and Methods
    • /
    • 제19권3호
    • /
    • pp.423-432
    • /
    • 2012
  • This paper is concerned with the detection of multiple change-points in linear regression models. The proposed procedure relies on the local estimation for global change-point estimation. We propose a multiple change-point estimator based on the local least squares estimators for the regression coefficients and the split measure when the number of change-points is unknown. Its statistical properties are shown and its performance is assessed by simulations and real data applications.

3지 신호교차로의 교통사고 발생모형 - 청주시를 사례로 - (Traffic Accident Models of 3-Legged Signalized Intersections in the Case of Cheongju)

  • 박병호;한상욱;김태영
    • 한국안전학회지
    • /
    • 제24권2호
    • /
    • pp.94-99
    • /
    • 2009
  • This study deals with the traffic accidents at the 3-legged signalized intersections in Cheongu. The goals are to analyze the geometric, traffic and operational conditions of intersections and to develop a various functional forms that predict the accidents. The models are developed through the correlation analysis, the multiple linear, the multiple nonlinear, Poisson and negative binomial regression analysis. In this study, two multiple linear, two multiple nonlinear and two negative binomial regression models were calibrated. These models were all analyzed to be statistically significant. All the models include 2 common variables(traffic volume and lane width) and model-specific variables. These variables are, therefore, evaluated to be critical to the accident reduction of Cheongju.

Robust Estimation and Outlier Detection

  • Myung Geun Kim
    • Communications for Statistical Applications and Methods
    • /
    • 제1권1호
    • /
    • pp.33-40
    • /
    • 1994
  • The conditional expectation of a random variable in a multivariate normal random vector is a multiple linear regression on its predecessors. Using this fact, the least median of squares estimation method developed in a multiple linear regression is adapted to a multivariate data to identify influential observations. The resulting method clearly detect outliers and it avoids the masking effect.

  • PDF

A Study on Detection of Influential Observations on A Subset of Regression Parameters in Multiple Regression

  • Park, Sung Hyun;Oh, Jin Ho
    • Communications for Statistical Applications and Methods
    • /
    • 제9권2호
    • /
    • pp.521-531
    • /
    • 2002
  • Various diagnostic techniques for identifying influential observations are mostly based on the deletion of a single observation. While such techniques can satisfactorily identify influential observations in many cases, they will not always be successful because of some mask effect. It is necessary, therefore, to develop techniques that examine the potentially influential effects of a subset of observations. The partial regression plots can be used to examine an influential observation for a single parameter in multiple linear regression. However, it is often desirable to detect influential observations for a subset of regression parameters when interest centers on a selected subset of independent variables. Thus, we propose a diagnostic measure which deals with detecting influential observations on a subset of regression parameters. In this paper, we propose a measure M, which can be effectively used for the detection of influential observations on a subset of regression parameters in multiple linear regression. An illustrated example is given to show how we can use the new measure M to identify influential observations on a subset of regression parameters.

GMA용접의 단락이행영역에 있어서 아크 상태 평가를 위한 모델 개발 (Development of the Index for Estimating the Arc Status in the Short-circuiting Transfer Region of GMA Welding)

  • 강문진;이세헌;엄기원
    • Journal of Welding and Joining
    • /
    • 제17권4호
    • /
    • pp.85-92
    • /
    • 1999
  • In GMAW, the spatter is generated because of the variation of the arc state. If the arc state is quantitatively assessed, the control method to make the spatter be reduced is able to develop. This study was attempted to develop the optimal model that could estimate the arc state quantitatively. To do this, the generated spatters was captured under the limited welding conditions, and the waveforms of the arc voltage and of the welding current were collected. From the collected waveforms, the waveform factors and their standard deviations were produced, and the linear and non-linear regression models constituted using the factors and their standard deviations are proposed to estimate the arc state. the performance test to the proposed models was practiced. Obtained results are as follow. From the results of correlation analysis between the factors and the amount of the generated spatters, the standard deviations of the waveform factors have more the multiple regression coefficients than the waveform factors. Because the correlation coefficient between T and {TEX}$T_{a}${/TEX}, and s[T] and s[{TEX}$T_{a}${/TEX}] was nearly one, it was found that these factors have the same effect to the spatter generation. In the regression models to estimate the arc state, it was fond that the linear and the non linear models were also consisted of similar factors. In addition, the linear regression model was assessed the optimal model for estimating the arc state because the variance of data was narrow and multiple regression coefficient was highest among the models. But in the welding conditions which the amount of the generated spatters were small, it was found that the non linear regression model had better the estimation performance for the spatter generation than the linear.

  • PDF