• Title/Summary/Keyword: Linear algorithm

Search Result 4,052, Processing Time 0.035 seconds

A Study on the Improved Parity Check Receiver for the Extended m-sequence Based Multi-code Spread Spectrum System with Code Set Partitioning and Constant Amplitude Precoding (코드집합 분할 방식의 확장 m-시퀀스 기반 정진폭 멀티코드 대역확산 통신 시스템을 위한 개선된 패리티 검사 기반 수신기에 관한 연구)

  • Han, Jun-Sang;Kim, Dong-Joo;Kim, Myoung-Jin
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.49 no.8
    • /
    • pp.1-11
    • /
    • 2012
  • The multi-code spread spectrum communication system, which spreads data bit stream by multiplexing orthogonal codes, can transmit data in high rate. However it needs the high-cost good linear amplifier because of the multi-level output signal. In order to overcome this drawback several systems making the amplitude of output signal constant with Walsh codes have been proposed. Recently constant amplitude pre-coded multi-code spread spectrum systems using extended m-sequence have been proposed. In this paper we consider an extended m-sequence based constant amplitude multi-code spread spectrum system with code set partitioning. By grouping the orthogonal codes into 4 subsets, not only is the computational complexity of the transceiver reduced but BER performance also improves. It has been shown that parity checking on four detected codes at the receiver can correct code detection error and result in BER performance enhancement. In this paper we propose a improved parity check receiver. We carried out computer simulation to verify feasibility of the proposed algorithm.

Pattern Recognition Improvement of an Ultrasonic Sensor System Using Neuro-Fuzzy Signal Processing (초음파센서 시스템의 패턴인식 개선을 위한 뉴로퍼지 신호처리)

  • Na, Seung-You;Park, Min-Sang
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.35S no.12
    • /
    • pp.17-26
    • /
    • 1998
  • Ultrasonic sensors are widely used in various applications due to advantages of low cost, simplicity in construction, mechanical robustness, and little environmental restriction in usage. But for the application of object recognition, ultrasonic sensors exhibit several shortcomings of poor directionality which results in low spatial resolution of objects, and specularity which gives frequent erroneous range readings. The time-of-flight(TOF) method generally used for distance measurement can not distinguish small object patterns of plane, corner or edge. To resolve the problem, an increased number of the sensors in the forms of a linear array or 2-dimensional array of the sensors has been used. Also better resolution has been obtained by shifting the array in several steps using mechanical actuators. Also simple patterns are classified based on analyzing signal reflections. In this paper we propose a method of a sensor array system with improved capability in pattern distinction using electronic circuits accompanying the sensor array, and intelligent algorithm based on neuro-fuzzy processing of data fusion. The circuit changes transmitter output voltages of array elements in several steps. A set of different return signals from neighborhood sensors is manipulated to provide enhanced pattern recognition in the aspects of inclination angle, size and shift as well as distance of objects. The results show improved resolution of the measurements for smaller targets.

  • PDF

Analysis of Dynamic Deformation of 4-Bar Linkage Mechanism (1) Finite Element Analysis and Numerical Solution (4절 링크 기구의 동적 변형 해석 (I) 유한 요소 해석 및 수치해)

  • Cho, Sun-Whi;Park, Jong-Keun;Lee, Jin
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.4
    • /
    • pp.737-752
    • /
    • 1992
  • Analysis of elasto-dynamic deformation of flexible linkage mechanism is conducted using the finite element method. The equations of motion of the system are derived from the static structural problem in which dynamic inertia, gravitational and driving forces are treated as external loads. Linear spring model is included in the formulation of equation of motions to represent the effects of deformation of elastic bearings of revolute joints on the system behavior. A computer program is constructed and applied to analyze a specific crank-lever 4-bar mechanism. The algorithm of the program is as follows. First, the natural frequencies and the mode shapes of the system are calculated by solving the eigenproblem of the mechanism system which can be considered as a static structure by assuming the input shaft (crank shaft) to be fixed at any given configuration of mechanism. And finally, the elasto-dynamic deformation of the whole system is obtained using mode superposition method for the case of constant input speed. The effect of geometric stiffness on the mechamism is included in the program with the axial forces of links obtained through the quasi-static displacement analysis. It is found that the geometric stiffness exerts an important effect upon the elasto-dynamic behavior of the flexible linkage mechanism. Elastic deformation of bearing lowers the natural frequencies of the system, resulting smaller elastic displacement at the mid-point of the links and bigger elestic displacement at the ends of the links than rigid bearing. The above investigation of flexible linkage mechanism shows that the effects of the elastic deformation of bearing on the mechanism should be considered to design the mechanism which satisfies more preciously the purpose and the condition of design.

Fast Detection of Power Lines Using LIDAR for Flight Obstacle Avoidance and Its Applicability Analysis (비행장애물 회피를 위한 라이다 기반 송전선 고속탐지 및 적용가능성 분석)

  • Lee, Mijin;Lee, Impyeong
    • Spatial Information Research
    • /
    • v.22 no.1
    • /
    • pp.75-84
    • /
    • 2014
  • Power lines are one of the main obstacles causing an aircraft crash and thus their realtime detection is significantly important during flight. To avoid such flight obstacles, the use of LIDAR has been recently increasing thanks to its advantages that it is less sensitive to weather conditions and can operate in day and night. In this study, we suggest a fast method to detect power lines from LIDAR data for flight obstacle avoidance. The proposed method first extracts non-ground points by eliminating the points reflected from ground surfaces using a filtering process. Second, we calculate the eigenvalues for the covariance matrix from the coordinates of the generated non-ground points and obtain the ratio of eigenvalues. Based on the ratio of eigenvalues, we can classify the points on a linear structure. Finally, among them, we select the points forming horizontally long straight as power-line points. To verify the algorithm, we used both real and simulated data as the input data. From the experimental results, it is shown that the average detection rate and time are 80% and 0.2 second, respectively. If we would improve the method based on the experiment results from the various flight scenario, it will be effectively utilized for a flight obstacle avoidance system.

A study on the design exploration of Optical Image Stabilization (OIS) for Smart phone (스마트폰을 위한 광학식 손떨림 보정 설계 탐색에 관한 연구)

  • Lee, Seung-Kwon;Kong, Jin-Hyeung
    • Journal of Digital Contents Society
    • /
    • v.19 no.8
    • /
    • pp.1603-1615
    • /
    • 2018
  • In order to achieve the low complexity and area, power in the design of Optical Image Stabilization (OIS) suitable for the smart phone, this paper presents the following design explorations, such as; optimization of gyroscope sampling rate, simple and accurate gyroscope filters, and reduced operating frequency of motion compensation, optimized bit width in ADC and DAC, evaluation of noise effects due to PWM driving. In experiments of gyroscope sampling frequencies, it is found that error values are unvaried in the frequency above 5KHz. The gyroscope filter is efficiently designed by combining the Fuzzy algorithm, to illustrate the reasonable compensation for the angle and phase errors. Further, in the PWM design, the power consumption of 2MHz driving is shown to decrease up to 50% with respect to the linear driving, and the imaging noises are reduced in the driving frequency above 2MHz driving frequency. The operating frequency could be reduced to 5KHz in controller and 10KHz in driver, respectively, in the motion compensation. For ADC and DAC, the optimized exploration experiments verify the minimum bit width of 11bits in ADC as well as 10bits in DAC without the performance degradation.

Discrimination between spontaneous and posed smile: Humans versus computers (자발적 웃음과 인위적 웃음 간의 구분: 사람 대 컴퓨터)

  • Eom, Jin-Sup;Oh, Hyeong-Seock;Park, Mi-Sook;Sohn, Jin-Hun
    • Science of Emotion and Sensibility
    • /
    • v.16 no.1
    • /
    • pp.95-106
    • /
    • 2013
  • The study compares accuracies between humans and computer algorithms in the discrimination of spontaneous smiles from posed smiles. For this purpose, subjects performed two tasks, one was judgment with single pictures and the other was judgment with pair comparison. At the task of judgment with single pictures, in which pictures of smiling facial expression were presented one by one, subjects were required to judge whether smiles in the pictures were spontaneous or posed. In the task for judgment with pair comparison, in which two kinds of smiles from one person were presented simultaneously, subjects were to select spontaneous smile. To calculate the discrimination algorithm accuracy, 8 kinds of facial features were used. To calculate the discriminant function, stepwise linear discriminant analysis (SLDA) was performed by using approximately 50 % of pictures, and the rest of pictures were classified by using the calculated discriminant function. In the task of single pictures, the accuracy rate of SLDA was higher than that of humans. In the analysis of accuracy on pair comparison, the accuracy rate of SLDA was also higher than that of humans. Among the 20 subjects, none of them showed the above accuracy rate of SLDA. The facial feature contributed to SLDA effectively was angle of inner eye corner, which was the degree of the openness of the eyes. According to Ekman's FACS system, this feature corresponds to AU 6. The reason why the humans had low accuracy while classifying two kinds of smiles, it appears that they didn't use the information coming from the eyes enough.

  • PDF

Reduction of Radiographic Quantum Noise Using Adaptive Weighted Median Filter (적응성 가중메디안 필터를 이용한 방사선 투과영상의 양자 잡음 제거)

  • Lee, Hoo-Min;Nam, Moon-Hyon
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.22 no.5
    • /
    • pp.465-473
    • /
    • 2002
  • Images are easily corrupted by noise during the data transmission, data capture and data processing. A technical method of noise analyzing and adaptive filtering for reducing of quantum noise in radiography is presented. By adjusting the characteristics of the filter according to local statistics around each pixel of the image as moving windowing, it is possible to suppress noise sufficiently while preserve edge and other significant information required in reading. We have proposed adaptive weighted median(AWM) filters based on local statistics. We show two ways of realizing the AWM filters. One is a simple type of AWM filter, whose weights are given by a simple non-linear function of three local characteristics. The other is the AWM filter which is constructed by homogeneous factor(HF). Homogeneous factor(HF) from the quantum noise models that enables the filter to recognize the local structures of the image is introduced, and an algorithm for determining the HF fitted to the detection systems with various inner statistical properties is proposed. We show by the experimented that the performances of proposed method is superior to these of other filters and models in preserving small details and suppressing the noise at homogeneous region. The proposed algorithms were implemented by visual C++ language on a IBM-PC Pentium 550 for testing purposes, the effects and results of the noise filtering were proposed by comparing with images of the other existing filtering methods.

An Algorithm for Real-Traffic Signal Control at An Isolated-Intersection (실시간 신호제어알고리즘 개발에 관한 연구)

  • Shin, Eon-Kyo;Kim, Young-Chan;Lee, Jong-Man
    • Journal of Korean Society of Transportation
    • /
    • v.22 no.7 s.78
    • /
    • pp.161-167
    • /
    • 2004
  • While most or fixed-time control systems such as UTCS produce the signal timing plans that either maximizing bandwidth or minimizing a disutility index of delay and stops, cannot consider the fluctuation of traffic flow. One category of the traffic-response control systems, which make small changes on a predefined signal plan such as SCOOT, cannot be easily modified for feedback real-time control schemes based on observation of variables other than traffic flow. The other category, which decide to whether switch the traffic lights or not at each step of time as in PRODYN, does not adequately consider the relations between traffic flows and traffic lights at each step of time. In this paper we present a complete formulation that adequately consider the relations between traffic flows and traffic lights at each step of time. The formulation is a binary mixed integer linear programing (BMILP) that obtain traffic lights at each step for minimizing delay. Since numarical examples for application of the proposed model illustrated that the model adequately produced dynamic traffic signal plans minimizing delay at each step, the model may be expected to contribute to advanced transportation management systems (ATMS) for dynamic traffic signal control.

Study on Improvement of Target Tracking Performance for RASIT(RAdar of Surveillance for Intermediate Terrain) Using Active Kalman filter (능동형 Kalman filter를 이용한 지상감시레이더의 표적탐지능력 향상에 관한 연구)

  • Myung, Sun-Yang;Chun, Soon-Yong
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.46 no.3
    • /
    • pp.52-58
    • /
    • 2009
  • If a moving target has a linear characteristics, the Kalman filter can estimate relatively accurate the location of a target, but this performance depends on how the dynamic status characteristics of the target is accurately modeled. In many practical problems of tracking a maneuvering target, a simple kinematic model can fairly accurately describe the target dynamics for a wide class of maneuvers. However, since the target can exhibit a wide range of dynamic characteristics, no fixed SKF(Simple Kalman filter) can be matched to estimate, to the required accuracy, the states of the target for every specific maneuver. In this paper, a new AKF(Active Kalman filter) is proposed to solve this problem The process noise covariance level of the Kalman filter is adjusted at each time step according to the study result which uses the neural network algorithm. It is demonstrated by means of a computer simulation that the tracking capability of the proposed AKF(Active Kalman filter) is better than that of the SKF(Simple Kalman Filter).

An Adaptive Temporal Suppression for Reducing Network Traffic in Wireless Sensor Networks (무선 센서 네트워크에서 통신량 감소를 위한 적응적 데이터 제한 기법)

  • Min, Joonki;Kwon, Youngmi
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.49 no.10
    • /
    • pp.60-68
    • /
    • 2012
  • Current wireless sensor networks are considered to support more complex operations ranging from military to health care which require energy-efficient and timely transmission of large amounts of data. In this paper, we propose an adaptive temporal suppression algorithm which exploits a temporal correlation among sensor readings. The proposed scheme can significantly reduce the number of transmitted sensor readings by sensor node, and consequently decrease the energy consumption and delay. Instead of transmitting all sensor readings from sensor node to sink node, the proposed scheme is to selectively transmit some elements of sensor readings using the adaptive temporal suppression, and the sink node is able to reconstruct the original data without deteriorating data quality by linear interpolation. In our proposed scheme, sensing data stream at sensor node is divided into many small sensing windows and the transmission ratio in each window is decided by the window complexity. It is defined as the number of a fluctuation point which has greater absolute gradient than threshold value. We have been able to achieve up about 90% communication reduction while maintaining a minimal distortion ratio 6.5% in 3 samples among 4 ones.