Kim, Sangdae;Kim, Cheonyong;Cho, Hyunchong;Jung, Kwansoo;Oh, Seungmin
KIPS Transactions on Computer and Communication Systems
/
v.9
no.11
/
pp.256-264
/
2020
Industrial Wireless Sensor Networks (IWSNs) is exploited to achieve various objectives such as improving productivity and reducing cost in the diversity of industrial application, and it has requirements such as low-delay and high reliability packet transmission. To accomplish the requirement, the network manager performs graph construction and resource allocation about network topology, and determines the transmission cycle and path of each node in advance. However, this network management scheme cannot treat mobile devices that cause continuous topology changes because graph reconstruction and resource reallocation should be performed as network topology changes. That is, despite the growing need of mobile devices in many industries, existing scheme cannot adequately respond to path failure caused by movement of mobile device and packet loss in the process of path recovery. To solve this problem, a network management scheme is required to prevent packet loss caused by mobile devices. Thus, we analyse the location and movement cycle of mobile devices over time using machine learning for predicting the mobility pattern. In the proposed scheme, the network manager could prevent the problems caused by mobile devices through performing graph construction and resource allocation for the predicted network topology based on the movement pattern. Performance evaluation results show a prediction rate of about 86% compared with actual movement pattern, and a higher packet delivery ratio and a lower resource share compared to existing scheme.
Journal of the Institute of Electronics and Information Engineers
/
v.51
no.1
/
pp.185-194
/
2014
One in every 10 persons suffer from chronic gastritis in Korea. Endoscopy is most commonly used to diagnose the chronic gastritis. Endoscopic diagnosis is precise but it is accompanied with pain and high cost. According to pulse diagnosis in Traditional East Asian Medicine, health problems in stomach can be diagnosed with radial pulse signals in 'Guan' location in the right wrist, which are non-invasive and cost-effective. In this study, we developed a classification model of chronic gastritis using pulse signals in right 'Guan' location. We used both linear discrimination method and logistic regression model with respect to pulse features obtained with a peak-valley detection algorithm and a Gaussian model. As a result, we obtained sensitivity ranged between 77%~89% and specificity ranged between 72%~83% depending on classification models and feature extraction methods, and the average classification rates were approximately 80%, irrespective of the models. Specifically, the Gaussian model were featured by superior sensitivities (89.1% and 87.5%) while the peak-valley detection method showed superior specificities (82.8% and 81.3%), and the average classification rate (sensitivity + specificity) of the Gaussian model was 80.9% which was 1.2% ahead of the peak-valley method. In conclusion, we obtained a reliable classification model for the chronic gastritis based on the radial pulse feature extraction algorithms, where the Gaussian model was featured by outperformed sensitivity and the peak-valley method was featured by outperformed specificity.
The Journal of the Institute of Internet, Broadcasting and Communication
/
v.16
no.4
/
pp.31-40
/
2016
In vehicular ad-hoc networks (VANETs), vehicles sense information on emergency incidents (e.g., accidents, unexpected road conditions, etc.) and propagate this information to following vehicles and a server to share the information. However, this process of emergency message propagation is based on multiple broadcast messages and can lead to broadcast storms. To address this issue, in this work, we use a novel approach to detect the vehicles that are farthest away but within communication range of the transmitting vehicle. Specifically, we discuss a signal-to-noise ratio (SNR)-based linear back-off (SLB) scheme where vehicles implicitly detect their relative locations to the transmitter with respect to the SNR of the received packets. Once the relative locations are detected, nodes that are farther away will set a relatively shorter back-off to prioritize its forwarding process so that other vehicles can suppress their transmissions based on packet overhearing. We evaluate SLB using a realistic simulation environment which consists of a NS-3 VANET simulation environment, a software-based WiFi-IP gateway, and an ITS server operating on a separate machine. Comparisons with other broadcasting-based schemes indicate that SLB successfully propagates emergency messages with latencies and hop counts that is close to the experimental optimal while reducing the number of transmissions by as much as 1/20.
Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
/
v.33
no.1
/
pp.31-43
/
2015
This study had been aimed to conduct the camera calibration on VLBI antenna in the Space Geodetic Observation Center of Sejong City with a low-cost digital camera, which embedded in a mobile phone to determine the three-dimension position coordinates of the VLBI antenna, based on stereo images. The initial values for the camera calibration have been obtained by utilizing the Direct Linear Transformation algorithm and the commercial digital photogrammetry system, PhotoModeler $Scanner^{(R)}$ ver. 6.0, respectively. The accuracy of camera calibration results was compared with that the camera calibration results, acquired by a bundle adjustment with nonlinear collinearity condition equation. Although two methods showed significant differences in the initial value, the final calibration demonstrated the consistent results whichever methods had been performed for obtaining the initial value. Furthermore, those three-dimensional coordinates of feature points of the VLBI antenna were respectively calculated using the camera calibration by the two methods to be compared with the reference coordinates obtained from a total station. In fact, both methods have resulted out a same standard deviation of $X=0.004{\pm}0.010m$, $Y=0.001{\pm}0.015m$, $Z=0.009{\pm}0.017m$, that of showing a high degree of accuracy in centimeters. From the result, we can conclude that a mobile phone camera opens up the way for a variety of image processing studies, such as 3D reconstruction from images captured.
The intelligent transportation systems allow us to have valuable opportunities for collecting wide-area coverage traffic data. The significant efforts have been made in many countries to provide the reliable traffic conditions information such as travel time. This study analyzes the impacts of the fog weather conditions on the traffic stream. Also, a strategy for predicting the long-term traffic speeds is developed under foggy weather conditions. The results show that the average of speed reductions are 2.92kph and 5.36kph under the slight and heavy fog respectively. The best prediction performance is achieved when the previous 45 pattern cases data is used, and the 14.11% of mean absolute percentage error(MAPE) is obtained. The outcomes of this study support the development of more reliable traffic information for providing advanced traffic information service.
Kim, Dong-Kyun;Joo, Gea-Jae;Jeong, Kwang-Seuk;Chang, Kwang-Hyson;Kim, Hyun-Woo
Korean Journal of Ecology and Environment
/
v.39
no.1
s.115
/
pp.52-61
/
2006
The aim of this study was to analyze the seasonal patterns of zooplankton community dynamics in the lower Nakdong River (Mulgum, RK; river kilometer; 27 km from the estuarine barrage), with a Self-Organizing Map (SOM) based on weekly sampled data collected over ten years(1994 ${\sim}$ 2003). It is well known that zooplankton groups had important role in the food web of freshwater ecosystems, however, less attention has been paid to this group compared with other community constituents. A non-linear patterning algorithm of the SOM was applied to discover the relationship among river environments and zooplankton community dynamics. Limnological variables (water temperature, dissolved oxygen, pH , Secchi transparency, turbidity, chlorophyll a, discharge, etc.) were taken into account to implement patterning seasonal changes of zooplankton community structures (consisting of rotifers, cladocerans and copepods). The trained SOM model allocated zooplankton on the map plane with limnological parameters. Three zooplankton groups had high similarities to one another in their changing seasonal patterns, Among the limnological variables, water temporature was highly related to the zooplankton community dynamics (especially for cladocerans). The SOM model illustrated the suppression of zooplankton due to the increased river discharge, particularly in summer. Chlorophyll a concentrations were separated from zooplankton data set on the map plane, which would intimate the herbivorous activity of dominant grazers. This study introduces the zooplankton dynamics associated with limnological parameters using a nonlinear method, and the information will be useful for managing the river ecosystem, with respect to the food web interactions.
Journal of the Korea Academia-Industrial cooperation Society
/
v.14
no.5
/
pp.2393-2399
/
2013
In this paper, we proposed a method to screening of Alzheimer's disease (AD) from Raman spectra of platelet with synthesis of basis spectra using singular value decomposition (SVD). Raman spectra of platelet from AD transgenic mice are preprocessed with denoising, removal background and normalization method. The column vectors of each data matrix consist of Raman spectrum of AD and normal (NR). The matrix is factorized using SVD algorithm and then the basis spectra of AD and NR are determined by 12 column vectors of each matrix. The classification process is completed by select the class that minimized the root-mean-square error between the validation spectrum and the linear synthesized spectrum of the basis spectra. According to the experiments involving 278 Raman spectra, the proposed method gave about 97.6% classification rate, which is better performance about 6.1% than multi-layer perceptron (MLP) with extracted features using principle components analysis (PCA). The results show that the basis spectra using SVD is well suited for the diagnosis of AD by Raman spectra from platelet.
It is required to research on high-dimensional index structures for efficiently retrieving high-dimensional data because an attribute vector in data warehousing and a feature vector in multimedia database have a characteristic of high-dimensional data. For this, many high-dimensional index structures have been proposed, but they have so called ‘dimensional curse’ problem that retrieval performance is extremely decreased as the dimensionality is increased. To solve the problem, the cell-based filtering (CBF) scheme has been proposed. But the CBF scheme show a linear decreasing on performance as the dimensionality. To cope with the problem, it is necessary to make use of parallel processing techniques. In this paper, we propose a parallel CBF scheme which uses a horizontally-partitioned technique as declustering. In order to maximize the retrieval performance of the proposed parallel CBF scheme, we construct our parallel CBF scheme under a SN (Shared Nothing) cluster architecture. In addition, we present a data insertion algorithm, a rage query processing one, and a k-NN query processing one which are suitable for the SN cluster architecture. Finally, we show that our parallel CBF scheme achieves better retrieval performance in proportion to the number of servers in the SN cluster architecture, compared with the conventional CBF scheme.
The T1 mapping of an human anatomy may give a characteristic contrast among the various tissues and the normal/abnormal tissues. Here, the methodology of constructing T1 map out of several images with different TRs, will be described using non-linear curve fitting. The general curve fitting algorithm requires the initial trial values T1t and Mot for the variables to be fitted. Three different methods of suppling the trial T1t and Mot are suggested and compared for the efficiency and the accuracy. The curve-fitting routine was written in ANSI C and excuted on a SUN workstation. Several distilled-water phantoms with various concentrations of Gd-DTPA were prepared to examine the accuracy of the curve-fitting program. An MR image was used as the true proton density image without any random noise, and several images with different TRs were generated with the theoretical T1 relaxation times 250, 500, and 1000msec. The random noise of 1, 5, and 10% were embedded into the simulated images. These images were used to generate the T1 map, and the resultant T1 maps for each T1 were analyzed to study the effect of the random noise on the T1 map.
Objectives: The Korean Genome and Epidemiology Study (KoGES), a multicenter-based multi-cohort study, has collected information on body composition using two different bioelectrical impedence analysis (BIA) machines. The aim of the study was to evaluate the possibility of whether the test values measured from different BIA machines can be integrated through statistical adjustment algorithm under excellent inter-rater reliability. Methods: We selected two centers to measure inter-rater reliability of the two BIA machines. We set up the two machines side by side and measured subjects' body compositions between October and December 2007. Duplicated test values of 848 subjects were collected. Pearson and intra-class correlation coefficients for inter-rater reliability were estimated using results from the two machines. To detect the feasibility for data integration, we constructed statistical compensation models using linear regression models with residual analysis and R-square values. Results: All correlation coefficients indicated excellent reliability except mineral mass. However, models using only duplicated body composition values for data integration were not feasible due to relatively low $R^2$ values of 0.8 for mineral mass and target weight. To integrate body composition data, models adjusted for four empirical variables that were age, sex, weight and height were most ideal (all $R^2$ > 0.9). Conclusions: The test values measured with the two BIA machines in the KoGES have excellent reliability for the nine body composition values. Based on reliability, values can be integrated through algorithmic statistical adjustment using regression equations that includes age, sex, weight, and height.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.