• Title/Summary/Keyword: Linear accelerator photon beam

Search Result 85, Processing Time 0.03 seconds

Study on the 6 MV Photon Beam Characteristics and Analysis Method from Medical Linear Accelerators Using Geant4 Medical Linac2 Example (GEANT4 Medical Linac2 예제를 이용한 6 MV 선형가속기 광자선속의 기초특성과 연구방법)

  • Kim, Byung-Yong;Kim, Hyung-Dong;Kim, Sung-Jin;Oh, Se-An;Kang, Jung-Gu;Kim, Sung-Kyu
    • Progress in Medical Physics
    • /
    • v.22 no.2
    • /
    • pp.79-84
    • /
    • 2011
  • In this study, Geant4 based Monte Carlo simulations were carried out for medical linear accelerator. Modified Medical Linac2 toolkit was used for calculation. The energy spectrum, most probable energy and the photon mean energy compared with the published results using the EGS4 code. The results well agreed with published results. The calculated results of photon fluence, energy fluence and mean energy according to the radius from the centre of the beam were analyzed. Monte Carlo simulation using Medical Linac2 code is considered to be useful for analysis of medical linear accelerator. Because the calculated results varies depending on Physics List model for same head structure. It it important to choose the right model for research purpose. Monte Carlo simulation using GEANT4 Medical Linac2 is a valuable for any novice to adopt this code to the study related to 6 MV photon fluence from medical linear accelerator.

Calculation of Energy Spectra for 6 MeV Electron Beam of LINAC Using MCNPX (MCNPX를 이용한 선형가속기의 6 MeV 전자선에 대한 에너지분포 계산)

  • Lee, Jeong-Ok;Jeong, Dong-Hyeok
    • Progress in Medical Physics
    • /
    • v.17 no.4
    • /
    • pp.224-231
    • /
    • 2006
  • The electron energy spectra for 6 MeV electron beam were calculated using a MCNPX code. The head of the linear accelerator (ML6M; Mitsubishi, Japan) was modelled for this study. The energy spectrum of the initial electron beam was assumed to be Gaussian and the mean energy was determined by evaluating the measured and calculated values of $R_{50}$ and dose profiles in air. The energy distributions for electrons and photons at the interested points in the head of the linear accelerator were calculated by appling the Initial beam parameters. The effect of contaminant photons on depth dose curves were estimated by the photon energy spectra at the end of the applicator.

  • PDF

Assessment of Radiation Dose from Radioactive Wedge Filters during High-Energy X-Ray Therapy

  • Back, Geum-mun;Park, Sung Ho;Kim, Tae-Hyung
    • Progress in Medical Physics
    • /
    • v.28 no.2
    • /
    • pp.45-48
    • /
    • 2017
  • This paper evaluated the amount of radiation generated by wedge filters during radiation therapy using a high-energy linear accelerator, and the dose to the worker during wedge replacement. After 10-MV photon beam was irradiated with wedge filter, the wedge was removed from the linear accelerator, and the dose rate and energy spectrum were measured. The initial measurement was approximately 1 uSv/h, and the radiation level was reduced to 0.3 uSv/h after 6 min. The effective half-life derived from the dose rate measurement was approximately 3.5 min, and the influence of AI-28 was about 53%. From the energy spectrum measurements, a peak of 1,799 keV was measured for AI-28, while the peak for Co-58 was not measured in the control room. The peaks for Au-106 and Cd-105 were found only measurement was done without wedge removement from the linear accelerator. The additional doses received by the radiation worker during wedge replacement were estimated to be 0.08-0.4 mSv per year.

Efficient Verification of X-ray Target Replacement for the C-series High Energy Linear Accelerator

  • Cho, Jin Dong;Chun, Minsoo;Son, Jaeman;An, Hyun Joon;Yoon, Jeongmin;Choi, Chang Heon;Kim, Jung-in;Park, Jong Min;Kim, Jin Sung
    • Progress in Medical Physics
    • /
    • v.29 no.3
    • /
    • pp.92-100
    • /
    • 2018
  • The manufacturer of a linear accelerator (LINAC) has reported that the target melting phenomenon could be caused by a non-recommended output setting and the excessive use of monitor unit (MU) with intensity-modulated radiation therapy (IMRT). Due to these reasons, we observed an unexpected beam interruption during the treatment of a patient in our institution. The target status was inspected and a replacement of the target was determined. After the target replacement, the beam profile was adjusted to the machine commissioning beam data, and the absolute doses-to-water for 6 MV and 10 MV photon beams were calibrated according to American Association of Physicists in Medicine (AAPM) Task Group (TG)-51 protocol. To verify the beam data after target replacement, the beam flatness, symmetry, output factor, and percent depth dose (PDD) were measured and compared with the commissioning data. The difference between the referenced and measured data for flatness and symmetry exhibited a coincidence within 0.3% for both 6 MV and 10 MV, and the difference of the PDD at 10 cm depth ($PDD_{10}$) was also within 0.3% for both photon energies. Also, patient-specific quality assurances (QAs) were performed with gamma analysis using a 2-D diode and ion chamber array detector for eight patients. The average gamma passing rates for all patients for the relative dose distribution was $99.1%{\pm}1.0%$, and those for absolute dose distribution was $97.2%{\pm}2.7%$, which means the gamma analysis results were all clinically acceptable. In this study, we recommend that the beam characteristics, such as beam profile, depth dose, and output factors, should be examined. Further, patient-specific QAs should be performed to verify the changes in the overall beam delivery system when a target replacement is inevitable; although it is more important to check the beam output in a daily routine.

A study on the calculation of the shielding wall thickness in Medical Linear Accelerator (의료용 선형가속기 차폐벽의 두께 산정에 관한 연구)

  • Lee, Dong-Yeon;Park, Eun-Tae;Kim, Jung-Hoon
    • Journal of radiological science and technology
    • /
    • v.40 no.2
    • /
    • pp.281-287
    • /
    • 2017
  • The purpose of this study is to calculate the thickness of shielding for concrete which is mainly used for radiation shielding and study of the walls constructed to shield medical linear accelerator. The optimal shielding thickness was calculated using MCNPX(Ver.2.5.0) for 10 MV of photon beam energy generated by linear accelerator. As a result, the TVL for photon shielding was formed at 50~100 cm for pure concrete and concrete with Boron+polyethylene at 80~100 cm. The neutron shielding was calculated 100~140 cm for pure concrete and concrete with Boron+polyethylene at 90~100 cm. Based on this study, the concrete is considered to be most efficient method of using steel plates and adding Boron+polyethylene th the concrete.

A Trial of 6 MV Linear Accelerator Radiation Therapy (RT) for Breast Cancer (6 MV 선형가속기를 사용한 유방암 치료)

  • Lee Guy Won;Park Ju Seon;Kim Geol;Yoon Sei Chul
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.1 no.1
    • /
    • pp.37-42
    • /
    • 1985
  • Radiation Therapy(RT) has been used in the treatment of breast cancer for over 80 years. Technically, it should include a part or all of such areas as chest wall or breast, axilla, internal mammary nodes(IM) and supraclavicular nodes (SCL). Authors tried three-field technique for the treatment of breast cancer using 6 MV linear accelerator, exclusively the department of Radiology, Kang-Nam St. Mary's Hospital, at Catholic Medical College. The field junction was checked by a phantom study and radiation doses measured by film densitometry and TLD. The 3 fields we used in this study were two isocentric opposing tangential fields encompassing the breast, chest wall and occasionally IM and one single anterior field encompassing the axilla and SCL. Using appropriate beam blocks and blouses, we were able to avoid unwanted intrinsic divergency of photon beam. Blocking also enabled us to set-up precise radiation field with ease.

  • PDF

A Trial of 6-MV Linear Accelerator Radiation Therapy (RT) for Breast Cancer (6MV 선형가속기를 사용한 유방암 치료)

  • Yoon S. C.;Kwon H. C.;Oh Y. K.;Kim J. W.;Bahk Y. W.
    • Radiation Oncology Journal
    • /
    • v.2 no.2
    • /
    • pp.303-309
    • /
    • 1984
  • Radiation therapy(RT) has been used in the treatment of breast cancer for over 80years. Technically, it should include a part or all of such areas as chest wall or breast, axilla, internal mammary nodes (IM) and supraclavicular nodes (SCL). Authors tried three-field technique for the treatment of breast cancer using 6-MV linear accelerator, exclusively the department of radiology. Kang-Nam St. Mary's Hospital, at Catholic Medical College. The field junction was checked by a Phantom study and radiation doses measured by film densitometry and TLD. The 3 fields we used in this study were two isocentric opposing tangential fields encompassing the breast, chest wall and occasionally IM and one single anterior field encompassing the axilla and SCL. sing appropriate beam blocks and boluses, we were able to avoid unwanted intrinsic divergency of photon beam. Blocking also enabled us to set-up precise radiation field with ease.

  • PDF

Design and optimization of thermal neutron activation device based on 5 MeV electron linear accelerator

  • Mahnoush Masoumi;S. Farhad Masoudi;Faezeh Rahmani
    • Nuclear Engineering and Technology
    • /
    • v.55 no.11
    • /
    • pp.4246-4251
    • /
    • 2023
  • The optimized design of a Neutron Activation Analysis (NAA) system, including Delayed Gamma NAA (DGNAA) and Prompt Gamma NAA (PGNAA), has been proposed in this research based on Mevex Linac with 5 MeV electron energy and 50 kW power as a neutron source. Based on the MCNPX 2.6 simulation, the optimized configuration contains; tungsten as an electron-photon converter, BeO as a photoneutron target, BeD2 and plexiglass as moderators, and graphite as a reflector and collimator, as well as lead as a gamma shield. The obtained thermal neutron flux at the beam port is equal to 2.06 × 109 (# /cm2.s). In addition, using the optimized neutron beam, the detection limit has been calculated for some elements such as H-1, B-10, Na-23, Al-27, and Ti-48. The HPGe Coaxial detector has been used to measure gamma rays emitted by nuclides in the sample. By the results, the proposed system can be an appropriate solution to measure the concentration and toxicity of elements in different samples such as food, soil, and plant samples.

Dose Characteristics of Stereotactic Radiosurgery in High Energy Linear Accelerator Proton Beam (고에너지 선형가속기에 의한 입체방사선수술의 선량특성)

  • Choi, Tae-Jin;Kim, Ok-Bae
    • Radiation Oncology Journal
    • /
    • v.10 no.2
    • /
    • pp.137-145
    • /
    • 1992
  • Three-dimensional dose calculations based on CT images are fundamental to stereotactic radiosurgery for small intracranial tumor. In our stereotactic radiosurgery program, irradiations have been performed using the 6 MV photon beam of linear accelerator after stereotactic CT investigations of the target center through the beam's-eye view and the coordinates of BRW frame converted to that of radiosurgery. Also we can describe the tumor diameter and the shape in three dimensional configuration. Non-coplanar irradiation technique was developed that it consists of a combination of a moving field with a gantry angle of $140^{\circ}$, and a horizontal couch angle of $200^{\circ}C$ around the isocenter. In this radiosurgery technique, we provide the patient head setup in the base-ring holder and rotate around body axis. The total gantry moving range shows angle of 2520 degrees via two different types of gantry movement in a plane perpendicular to the axis of patient. The 3-D isodose curves overlapped to the tumor contours in screen and analytic dose profiles in calculation area were provided to calculate the thickness of $80\%$ of tumor center dose to $20\%$ of that. Furtheremore we provided the 3-D dose profiles in entire calculation plane. In this experiments, measured isodose curves in phantom irradiation have shown very similiar to that of computer generations.

  • PDF

Measurement of Bremsstrahlung Radiation with Electron Beam Energy

  • Srivastava, R.P.;Chaurasia, P.P.;Prasiko, G.;Jha, A.K.
    • Proceedings of the Korean Society of Medical Physics Conference
    • /
    • 2002.09a
    • /
    • pp.235-236
    • /
    • 2002
  • A Klystron powered dual photon energy electron linear accelerator 2300 C/D from Varian Associates has been installed in our center. From the radiological safety view as well as treatment planning, the output (contamination) of Bremsstrahlung Radiation with electron beam energy determined accurately. It has been found 0.5% to 4.7% with increasing the electron beam energy which is the clinically not much significant in the treatment of the malignant diseases with the treatment of electron beam.

  • PDF