DOI QR코드

DOI QR Code

A study on the calculation of the shielding wall thickness in Medical Linear Accelerator

의료용 선형가속기 차폐벽의 두께 산정에 관한 연구

  • Lee, Dong-Yeon (Dept. of Radiation Oncology, Dongnam Ins. of Radiological & Medical Science) ;
  • Park, Eun-Tae (Dept. of Radiation Oncology, Inje University Busan Paik Hospital) ;
  • Kim, Jung-Hoon (Dept. of Radiological science, college of health sciences, Catholic University of Pusan)
  • 이동연 (동남권원자력의학원 방사선종양학과) ;
  • 박은태 (인제대학교 부산백병원 방사선종양학과) ;
  • 김정훈 (부산가톨릭대학교 보건과학대학 방사선학과)
  • Received : 2017.05.26
  • Accepted : 2017.06.08
  • Published : 2017.06.30

Abstract

The purpose of this study is to calculate the thickness of shielding for concrete which is mainly used for radiation shielding and study of the walls constructed to shield medical linear accelerator. The optimal shielding thickness was calculated using MCNPX(Ver.2.5.0) for 10 MV of photon beam energy generated by linear accelerator. As a result, the TVL for photon shielding was formed at 50~100 cm for pure concrete and concrete with Boron+polyethylene at 80~100 cm. The neutron shielding was calculated 100~140 cm for pure concrete and concrete with Boron+polyethylene at 90~100 cm. Based on this study, the concrete is considered to be most efficient method of using steel plates and adding Boron+polyethylene th the concrete.

본 연구는 방사선 차폐 시 주로 사용되고 있는 콘크리트를 대상으로 차폐 두께를 계산한 연구로서 의료용 선형가속기를 차폐하기 위해 구성되는 벽에 대한 연구이다. 선형가속기에서 발생하는 광자선 에너지 10 MV를 대상으로 MCNPX(Ver.2.5.0)를 이용하여 적절한 차폐 두께를 계산하고자 하였다. 그 결과, 광자선 차폐를 위한 십가층은 순수 콘크리트의 경우 50~100 cm, Boron+polyethylene 첨가 시 80~100 cm에서 형성되었다. 중성자 차폐는 순수 콘크리트의 경우 100~140 cm, Boron+polyethylene 첨가 시 90~100 cm으로 계산되었다. 이를 바탕으로 분석하면, 콘크리트 재질은 Steel 계열을 사용하고 콘크리트에 Boron+polyethylene을 첨가하여 구성하는 것이 가장 효율적인 것으로 판단된다.

Keywords

References

  1. Park Eun Tae: Study on the characteristics of photoneutron produced in medical linear accelerators, Dept. of Radiological science graduate school of catholic university of pusan, 2015
  2. International Atomic Energy Agency: Radiation Protection in the Design of Radiotherapy Facilities, IAEA safety report series No. 47, 2006
  3. International Atomic Energy Agency: Master Planning and Concept Design Considerations, IAEA human health report No. 10, 2014
  4. Lee Byung Chul, Kim Heon Il: Shielding Technology for High Energy Radiation Production Facility, Korea Atomic Energy Research Institute, 2004.
  5. Yang Seung Kyu, Um Tae Sun, Lee Jong Ryul et al.: Properties of Heavy-weight Concrete for Radiation Shielding, Korea concrete institute, 20(1), 561-564, 2008.
  6. Yang Geun Hyuk: A study on the mixing design and structural characteristics of nuclear powerplant conccrete, Korea Institute of Construction Engineering and Management, 14(1), 357-356, 2016.
  7. Oh Jeong Hwan, Mun Young Bum, Lee Jae Hyung, et al.: Aggregate effects on ${\gamma}$-ray shielding characteristic and compressive strength of concrete, Journal of Nuclear Fuel Cycle and Waste Technology, 14(4), 357-365, 2016. https://doi.org/10.7733/jnfcwt.2016.14.4.357
  8. Lee Dong Yeon: Neutron activation analysis of the medical linear accelerator, Dept. of Radiological science graduate school of catholic university of pusan, 2017
  9. Kim Jeong Kee: A study on the characteristics of X-ray and electron beam generated from medical linear accelerator, Dept. of physics graduate school of Dong-A university, 2006
  10. Lee Jeong Ok, Jeong Dong Hyeok, Kang Jeong Ku: Neutron generation from a 24 MV medical LINAC, Korean Society of Medical Physics, 16(2), 97-103, 2005
  11. W.L. Huang, Q.F. Li, T.Z. Lin et al.: Measurements of photoneutrons produced by 15 MeV electron linac for radiography applications, Nucl. Instr. and Meth. in Phy. Res., B251, 361-366, 2006
  12. A. Mesbahi, M. Fix, M. Allahaverdi et al.: Monte carlo calculation of Varian 2300C/D Linac photon beam characteristics: a comparison between MCNP4C, GEANT3 and measurements, Applied Radiation and Isotopes, 62(3), 469-477, 2005 https://doi.org/10.1016/j.apradiso.2004.07.008
  13. A. Baumgartner, A. Steurer, F. Josef Maringer: Simulation of photon energy spectra from Varian 2100C and 2300C/D Linacs: Simplified estimates with PENELOPE Monte Carlo models, Applied Radiation and Isotopes, 67(11), 2007-2012, 2009 https://doi.org/10.1016/j.apradiso.2009.07.010