• Title/Summary/Keyword: Linear Translation

Search Result 77, Processing Time 0.021 seconds

Role of Intergenic and 3'-Proximal Noncoding Regions in Coat Protein Expression and Replication of Barley yellow dwarf virus PAV

  • Moon, Jae-Sun;Nancy K. McCoppin;Leslie L. Domier
    • The Plant Pathology Journal
    • /
    • v.17 no.1
    • /
    • pp.22-28
    • /
    • 2001
  • Barley yellow dwarf virus PAV (BYDV-PAV) has a 5.7-kb positive-sense single-stranded RNA genome that contains six open reading frames (ORFs). BYDV-PAV produces three subgenomic RNAs (sgRNAs). The largest of which encodes the coat, 17-kDa, and readthrough proteins from two initiation codons. To investigate the role of intergenic and 3'-proximal noncoding regions (NCRs) in coat protein (CP) expression and BYDV-PAV replication, a full-length infectious cDNA of the RNA genome of an Illinois isolate of BYDV-PAV was constructed downstream of the Cauliflower mosaic virus-35S promoter. Linear DNA molecules of these cDNAs were infectious, expressed the 22-kDa CP, and produced both genomic RNA sgRNAs in ratios similar to those observed in protoplasts inoculated with viral RNA. The portion of 5'NCR of sgRNA1 between ORFs 2 and 3 was not required for, but enhanced translation of CP from ORF3. Mutants containing deletions in the NCR downstream of ORF5 failed to replicate in oat protoplasts. These results indicate that an intact 3$^1$NCR is required for BYDV-PAV replication.

  • PDF

Numerical simulation of single-phase two-components flow in naturally fractured oil reservoirs

  • Debossam, Joao Gabriel Souza;dos Santos Heringer, Juan Diego;de Souza, Grazione;Souto, Helio Pedro Amaral
    • Coupled systems mechanics
    • /
    • v.8 no.2
    • /
    • pp.129-146
    • /
    • 2019
  • The main goal of this work is to develop a numerical simulator to study an isothermal single-phase two-component flow in a naturally fractured oil reservoir, taking into account advection and diffusion effects. We use the Peng-Robinson equation of state with a volume translation to evaluate the properties of the components, and the discretization of the governing partial differential equations is carried out using the Finite Difference Method, along with implicit and first-order upwind schemes. This process leads to a coupled non-linear algebraic system for the unknowns pressure and molar fractions. After a linearization and the use of an operator splitting, the Conjugate Gradient and Bi-conjugated Gradient Stabilized methods are then used to solve two algebraic subsystems, one for the pressure and another for the molar fraction. We studied the effects of fractures in both the flow field and mass transport, as well as in computing time, and the results show that the fractures affect, as expected, the flow creating a thin preferential path for the mass transport.

Measurement of Internal Temperature Distribution for the Evaluation of Focused Ultrasound (FUS) Stimulation Devices (집속초음파 자극기의 성능평가를 위한 팬텀 내부온도 측정)

  • Doh, Il;Joe, Daniel J.;Kim, Sung Mok;Baik, Kyung Min;Kim, Yong Tae;Park, Seung Min
    • Journal of Biomedical Engineering Research
    • /
    • v.43 no.3
    • /
    • pp.147-152
    • /
    • 2022
  • This research is to measure real-time temperature distribution inside a tissue-mimicking phantom for the safety and effectiveness evaluations of focused ultrasound (FUS) device capable of linear scanning stimulation. Since the focusing area of the FUS stimulation device is smaller than diameter of conventional thermal probe and keeps moving, it is impossible to monitor temperature distribution inside the phantom. By using the phantom with a thin film temperature sensor array inserted, real-time temperature change caused by the FUS device was measured. The translation of the measured temperature peak was also tracked successfully. The present phantom had been experimentally proven to be applicable to validate the performance and safety of the therapeutic ultrasound devices.

Molecular Miology of the Poliovirus (폴리오바이러스의 분자생물학)

  • 최원상
    • Journal of Life Science
    • /
    • v.7 no.4
    • /
    • pp.392-401
    • /
    • 1997
  • The poliovirus is a small, and non-enveloped virus. The RNA genome of poliovirus is continuous, linear, and has a single open reading frame. This polyprotein precursor is cleaved proteolytically to yield mature products. Most of the cleavages occur by viral protease. The mature proteins derived from the P1 polyprotein precursor are the structural components of the viral capsid. The initial cleavage by 2A protease is indirectly involved in the cleavage of a cellular protein p220, a subunit of the eukaryotic translation initiation factor 4F. This cleavage leads to the shut-off of cap-dependent host cell translation, and allows poliovirus to utilize the host cell machinery exclusively for translation its own RNA, which is initiated by internal ribosome entry via a cap-independent mechanism. The functional role of the 2B, 2C and 2BC proteins are not much known. 2B, 2C, 2BC and 3CD proteins are involved in the replication complex of virus induced vesicles. All newly synthesized viral RNAs are linked with VPg. VPg is a 22 amino acid polypeptide which is derived from 3AB. The 3C and 3CD are protease and process most of the cleavage sites of the polyprotein precursor. The 3C protein is also involved in inhibition of RNA polymerase II and III mediated transcription by converting host transcription factor to an inactive form. The 3D is the RNA dependent RNA polymerase. It is known that poliovirus replication follows the general pattern of positive strand RNA virus. Plus strand RNA is transcribed into complementary minus strand RNA that, in turn, is transcribed for the synthesis of plus strand RNA is transcribed into complementary minus strand RNA that, in turn, is transcribed for the synthesis of plus strand RNA strands. Poliovirus RNA synthesis occurs in a membranous environment but how the template RNA and proteins required for RNA replication assemble in the membrane is not much known. The RNA requirements for the encapsidation of the poliovirus genome (packaging signal) are totally unknown. The poliovirus infection cycle lasts approximately 6 hours.

  • PDF

Infection and Pathogenesis Mechanisms of Marek's Disease Virus (마렉병 바이러스 감염과 병원성 발현 기전)

  • Jang, H.K.;Park, Y.M.;Cha, S.Y.;Park, J.B.
    • Korean Journal of Poultry Science
    • /
    • v.35 no.1
    • /
    • pp.39-55
    • /
    • 2008
  • Like the other herpesviruses, the virion of MDV consists of an envelope, which surrounds an amorphous tegument. Within the tegument, and icosahedral capsid encloses a linear double-stranded DNA core. Although the genome structure of MDV indicates that it is an ${\alpha}-herpesvirus$ like herpes simplex and varicella-zoster viruses, biological properties indicate MDV is more akin to the ${\gamma}-herpesvirus$ group, which includes Epstein-Barr and Kaposi's sarcoma herpesviruses. These herpesviruses replicate lytically in lymphocytes, epithelial and fibroblastic cells, and persist in lymphoblastoid cells. MDV has a complex life cycle and uses two means of replication, productive and non-productive, to exist and propagate. The method of reproduction changes according to a defined pattern depending on changes in virus-cell interactions at different stages of the disease, and in different tissues. Productive (lytic) interactions involve active invasion and take-over of the host cell, resulting in the production of infectious progeny virions. However, some herpesviruses, including MDV, can also establish a non-productive (abortive) infection in certain cell types, resulting in production of cell-associated progeny virus. Non-productive interactions represent persistent infection, in which the viral genome is present but gene expression is limited, there is no structural or regulatory gene translation, no replication, no release of progeny virions and no cell death. Reactivation of the virus is rare, and usually the infectious virus can be re-isolated only after cultivation in vitro. MDV establishes latency in lymphoid cells, some of which are subsequently transformed. In this review article, recent knowledges of the pathogenesis mechanisms followed by MDV infection to sensitive cells and chickens are discussed precisely.

A Study on Auto Inspection System of Cross Coil Movement Using Machine Vision (머신비젼을 이용한 Cross Coil Movement 자동검사 시스템에 관한 연구)

  • Lee, Chul-Hun;Seol, Sung-Wook;Joo, Jae-Heum;Lee, Sang-Chan;Nam, Ki-Gon
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.36S no.11
    • /
    • pp.79-88
    • /
    • 1999
  • In this paper we address the tracking method which tracks only target object in image sequence including moving object. We use a contour tracking algorithm based on intensity and motion boundaries. The motion of the moving object contour in the image is assumed to be well describable by an affine motion model with a translation, a change in scale and a rotation. The moving object contour is represented by B-spline, the position and motion of which is estimated along the image sequence. we use pattern recognition to identify target object. In order to use linear Kalman Filters we decompose the estimation process into two filters. One is estimating the affine motion parameters and the other the shape of moving object contour. In some experiments with dial plate we show that this method enables us to obtain the robust motion estimates and tracking trajectories even in case of including obstructive object.

  • PDF

How Image Quality Affects Determination of Target Displacement When Using kV Cone-beam Computed Tomography (CBCT) (kV Cone-beam CT를 사용한 치료준비에서 재구성 영상의 품질이 표적 위치 결정에 미치는 영향)

  • Oh, Seung-Jong;Kim, Si-Yong;Suh, Tae-Suk
    • Progress in Medical Physics
    • /
    • v.17 no.4
    • /
    • pp.207-211
    • /
    • 2006
  • The advent of kV cone-beam computed tomography (CBCT) integrated with a linear accelerator allows for more accurate Image-guided radiotherapy (IGRT). IGRT is the technique that corrects target displacement based on internal body information. To do this, the CBCT Image set is acquired just before the beam is delivered and registered with the simulation CT Image set. In this study, we compare the registration results according to the CBCT's reconstruction quality (either high or medium). A total of 56 CBCT projection data from 6 patients were analyzed. The translation vector differences were within 1 mm in all but 3 cases. For rotation displacement difference, components of all three axes were considered and 3 out of 168 ($56{\times}3$ axes) cases showed more than lo of rotation differences.

  • PDF

A study on correlation-based fingerprint recognition method (광학적 상관관계를 기반으로 하는 지문인식 방법에 관한 연구)

  • 김상백;주성현;정만호
    • Korean Journal of Optics and Photonics
    • /
    • v.13 no.6
    • /
    • pp.493-500
    • /
    • 2002
  • Fingerprint recognition is concerned with fingerprint acquisition and matching. Our research was focused on a fingerprint matching method using an inkless fingerprint input sensor at the fingerprint acquisition step. Since an inkless fingerprint sensor produces a digital-image-processed fingerprint image, we did not consider noise that can happen while acquiring the fingerprint. And making the user attempt fingerprint input as random, we considered image distortion that translation and rotation are included as complex. NJTC algorithm is used for fingerprint identification and verification. The method to find the center of the fingerprint is added in the NJTC algorithm to supplement discrimination of fingerprint recognition. From this center point, we decided the optimum cropping size for effective matching with pixels and demonstrated that the proposed method has high discrimination and high efficiency.

Camera Motion Estimation using Geometrically Symmetric Points in Subsequent Video Frames (인접 영상 프레임에서 기하학적 대칭점을 이용한 카메라 움직임 추정)

  • Jeon, Dae-Seong;Mun, Seong-Heon;Park, Jun-Ho;Yun, Yeong-U
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.39 no.2
    • /
    • pp.35-44
    • /
    • 2002
  • The translation and the rotation of camera occur global motion which affects all over the frame in video sequence. With the video sequences containing global motion, it is practically impossible to extract exact video objects and to calculate genuine object motions. Therefore, high compression ratio cannot be achieved due to the large motion vectors. This problem can be solved when the global motion compensated frames are used. The existing camera motion estimation methods for global motion compensation have a large amount of computations in common. In this paper, we propose a simple global motion estimation algorithm that consists of linear equations without any repetition. The algorithm uses information .of symmetric points in the frame of the video sequence. The discriminant conditions to distinguish regions belonging to distant view from foreground in the frame are presented. Only for the distant view satisfying the discriminant conditions, the linear equations for the panning, tilting, and zooming parameters are applied. From the experimental results using the MPEG test sequences, we can confirm that the proposed algorithm estimates correct global motion parameters. Moreover the real-time capability of the proposed technique can be applicable to many MPEG-4 and MPEG-7 related areas.

Evaluation of the Usefulness of Exactrac in Image-guided Radiation Therapy for Head and Neck Cancer (두경부암의 영상유도방사선치료에서 ExacTrac의 유용성 평가)

  • Baek, Min Gyu;Kim, Min Woo;Ha, Se Min;Chae, Jong Pyo;Jo, Guang Sub;Lee, Sang Bong
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.32
    • /
    • pp.7-15
    • /
    • 2020
  • Purpose: In modern radiotherapy technology, several methods of image guided radiation therapy (IGRT) are used to deliver accurate doses to tumor target locations and normal organs, including CBCT (Cone Beam Computed Tomography) and other devices, ExacTrac System, other than CBCT equipped with linear accelerators. In previous studies comparing the two systems, positional errors were analysed rearwards using Offline-view or evaluated only with a Yaw rotation with the X, Y, and Z axes. In this study, when using CBCT and ExacTrac to perform 6 Degree of the Freedom(DoF) Online IGRT in a treatment center with two equipment, the difference between the set-up calibration values seen in each system, the time taken for patient set-up, and the radiation usefulness of the imaging device is evaluated. Materials and Methods: In order to evaluate the difference between mobile calibrations and exposure radiation dose, the glass dosimetry and Rando Phantom were used for 11 cancer patients with head circumference from March to October 2017 in order to assess the difference between mobile calibrations and the time taken from Set-up to shortly before IGRT. CBCT and ExacTrac System were used for IGRT of all patients. An average of 10 CBCT and ExacTrac images were obtained per patient during the total treatment period, and the difference in 6D Online Automation values between the two systems was calculated within the ROI setting. In this case, the area of interest designation in the image obtained from CBCT was fixed to the same anatomical structure as the image obtained through ExacTrac. The difference in positional values for the six axes (SI, AP, LR; Rotation group: Pitch, Roll, Rtn) between the two systems, the total time taken from patient set-up to just before IGRT, and exposure dose were measured and compared respectively with the RandoPhantom. Results: the set-up error in the phantom and patient was less than 1mm in the translation group and less than 1.5° in the rotation group, and the RMS values of all axes except the Rtn value were less than 1mm and 1°. The time taken to correct the set-up error in each system was an average of 256±47.6sec for IGRT using CBCT and 84±3.5sec for ExacTrac, respectively. Radiation exposure dose by IGRT per treatment was measured at 37 times higher than ExacTrac in CBCT and ExacTrac at 2.468mGy and 0.066mGy at Oral Mucosa among the 7 measurement locations in the head and neck area. Conclusion: Through 6D online automatic positioning between the CBCT and ExacTrac systems, the set-up error was found to be less than 1mm, 1.02°, including the patient's movement (random error), as well as the systematic error of the two systems. This error range is considered to be reasonable when considering that the PTV Margin is 3mm during the head and neck IMRT treatment in the present study. However, considering the changes in target and risk organs due to changes in patient weight during the treatment period, it is considered to be appropriately used in combination with CBCT.