• 제목/요약/키워드: Linear Switched Reluctance Motor

검색결과 51건 처리시간 0.032초

SRM의 고정도 온, 오프 각 제어를 위한 선형 엔코더에 관한 연구 (Study on the Linear, Encoder for high Performance On Off control of SRM)

  • 홍정표;박성준;홍순일;김철우
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2000년도 하계학술대회 논문집 B
    • /
    • pp.984-987
    • /
    • 2000
  • In switched reluctance motor(SRM) drive, it is necessary to synchronize the stator phase excitation with the rotor position. Therefore the rotor position information is an essential. Usually optical encoders or resolvers are used to provide the rotor position information. These sensors are expensive and are not suitable for high speed operation. In the paper, the low cost linear encoder suitable for the practical and stable SRM drive is proposed and the control algorithm to provide the switching signals using the simple digital logic circuit is also presented in this paper. It is verified from the experiments that the proposed encoder and logic controller can be a powerful candidate for the practical low cost SRM drive.

  • PDF

저전압형 SRM 인버터의 병렬운전 위한 새로운 스위칭 (New Switching Pattern for the Paralleling of SRM Low Voltage Inverter)

  • 이상훈;박성준;원태현;안진우;이만형
    • 대한전기학회논문지:전기기기및에너지변환시스템부문B
    • /
    • 제53권6호
    • /
    • pp.359-367
    • /
    • 2004
  • The switched reluctance motor(SRM) has considerable potential for industrial applications because of its high result lily as a result of the absence of rotor windings. In some applications with SRM, paralleling strategy is often used for cost saving, increasing of current capacity and system reliability. A SRM inverter has very low ,switching frequency. This results in reducing the burden for a high-speed of the gate-amp interface circuit. and the linearity of optocoupler is used to protect the instantaneous peak current for the stable operation. In this paper, series resistor is used to equal the current sharing of each switching device and a linear gate-amp is proposed to protect the instantaneous peak current which occurs in transient state. The proposed paralleling strategy is verified by experimental results.

토크분배함수를 이용한 SRM의 적접토크제어기법 (Direct Torque Control Scheme of Switched Reluctance Motor using Novel Torque Sharing Function)

  • 안진우;이동희;김태형
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2007년도 추계학술대회 논문집 전기기기 및 에너지변환시스템부문
    • /
    • pp.138-140
    • /
    • 2007
  • A novel non-linear logical torque sharing function (TSF) is presented. To improve efficiency and to reduce torque ripple in commutation region, only a phase torque under commutation is regulated to produce a uniform torque. And the torque developed by the other phase remains with the previous state under a current limit of the motor and drive. If the minimum change of a phase torque reference can not satisfy the total reference torque, two-phase changing mode is used. Since a phase torque is constant and the other phase torque is changed at each rotor position, total torque error can be reduced within a phase torque error limit. And the total torque error is dependent on the change of phase torque. To consider non-linear torque characteristics and to suppress a tail current at the end of commutation region, the incoming phase current is changed to torque increasing direction, but the outgoing phase current is changed to torque decreasing direction. So, the torque sharing of the outgoing phase and incoming phase can be smoothly changed with a minimum current cross over. The proposed control scheme is verified by some computer simulations and experimental results.

  • PDF

자기부상/추진 일체화를 위한 선형 스위치드 릴럭턴스 모터의 모델링 (Modeling of Linear Switched Reluctance Motor for Self Levitation and Propulsion)

  • 성소영;조한욱;성호경;장석명
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2007년도 추계학술대회 논문집 전기기기 및 에너지변환시스템부문
    • /
    • pp.95-97
    • /
    • 2007
  • This paper proposes a mathematical modelling about Leviation Force and Propulsion Force in a system, where Primary and Secondary LSRM air-gap is irregular. This can be a suitable model for Magnetically levitation Train, where Primary and Secondary air-gap mechanically has to control simultaneously Levitation Force and Propulsion Force.

  • PDF

적응 백스텝핑 제어를 이용한 스위치드 릴럭턴스 전동기 속도제어기 연구 (Speed controller study of Switched Reluctance Motor using An Adaptive Backstepping Control)

  • 오주환;이진우;권병일
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2004년도 하계학술대회 논문집 B
    • /
    • pp.821-823
    • /
    • 2004
  • In this paper, a backstepping speed controller applied in SRM is presented. The driver of SRM is generally planned with a PI controller. A PI controller is becomes a satisfied structure in the system. it is used in position and speed control loops. However, when the system parameter uncertainties large inertia and load disturbance, it will not be able to expect a satisfied efficiency. Therefore, a backstepping control law was researched, which is able application even to a linear system as well as a nonlinear and it is more excellent than a origin adaptive control law. In this paper, a backstepping control law applied the drive system of SRM was used in the drive controller. The computer simulation result clearly show that the applied backstepping controller can track the speed reference signal generated by internal signals.

  • PDF

고속 LSRM의 설계 특성 및 동특성 시뮬레이션 (Design Characteristics and Dynamic Simulation of High Speed LSRM)

  • 성소영;성호경;박지훈;장석명
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2007년도 제38회 하계학술대회
    • /
    • pp.1155-1156
    • /
    • 2007
  • This paper deals with dynamic simulation and design characteristic of Linear Switched Reluctance Motor (LSRM). First, we derived design factor from pole arc ratio of stator and mover. Second, we decided design parameter from design factor using time constant. Finally, analyze dynamic characteristics for LSRM using simulation.

  • PDF

자기등가회로를 이용한 LSRM 인덕턴스 프로파일 산정 및 실험 (Inductance profile calculate and experiment of LSRM using magnetic equivalent circuit method)

  • 장석명;박지훈;최장영;조한욱;유대준;성호경
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2005년도 제36회 하계학술대회 논문집 B
    • /
    • pp.1150-1152
    • /
    • 2005
  • This paper deals with inductance profile of linear switched reluctance motor. Inductance profile of LSRM calculate at align and unalign position using magnetic equivalent circuit method. Magnetic equivalent circuit method of this paper used method of reference[3],[4], but this method used modification on account difference of design specification Also, analysis result compares with data that is derived through an experiment, and proved validity.

  • PDF

선형 엔코더를 이용한 SRM의 고정밀 온, 오프 각 제어 (High Performance On Off Angle Control of SRM Using Linear Encoder)

  • 이영진;박성준;박한웅;이만형
    • 한국정밀공학회지
    • /
    • 제17권12호
    • /
    • pp.61-67
    • /
    • 2000
  • In switched reluctance motor(SRM) drive, it is necessary to synchronize the stator phase excitation with the rotor position. Therefore the rotor position information is an essential. Usually optical encoders or resolvers are used to provide the rotor position information. These sensors are expensive and are not suitable for high speed operation. In general, the accuracy of the switching angle is dependent upon the resolution of the encoder and the sampling period of the microprocessor. But the region of high speed, switching angles are fluctuated back and forth from the preset values, which are cause by the sampling period of the microprocessor. Therefore, the low cost linear encoder suitable for the practical and stable SRM drive is proposed and the control algorithm to provide the switching signals using the simple digital logic circuit is also presented in this paper. It is verified from the experiments that the proposed encoder and logic controller can be a powerful candidate for the practical low cost SRM drive.

  • PDF

저전압 SR모터의 퍼지로직 기반 전상각 제어 (Fuzzy logic based advance angle control for low voltage SRM)

  • 김규동;신두진;허성재;허욱열
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2001년도 합동 추계학술대회 논문집 정보 및 제어부문
    • /
    • pp.22-25
    • /
    • 2001
  • In this paper, a fuzzy advance angle control method is described to drive an industrial low voltage SRM (Switched Reluctance Motor) for 10kW forklift truck. SRM has a highly non-linear characteristic that is due to change the rotor and stator. And low voltage SRM is designed that its phase resistance and phase inductance is very low to inject high current into the phase windings. In this reason, the proper current control is necessary to drive the low voltage SRM efficiently. SRM has positive torque at increasing inductance region and negative torque at decreasing inductance region. Due to this reason, the current has to be built up in the increasing phase inductance part as soon as possible. Therefore, the phase switch must be turned on before the phase inductance increases, and this angle is called as the advance angle. Also, the phase current has to be dropped before the phase inductance decreases. Fuzzy logic is a flexible and general-purposed method of implementing non-linear functions and as such it is useful in control applications. Consequently, we designed a fuzzy advance angle controller to control the phase current appropriately.

  • PDF

자기동조 제어에 의한 SRM의 최대 토크/효율 운전 (The Maximum Torque/Efficiency of SRM Driving for Self-Tuning Control)

  • 서종윤;차현록;김광헌;임영철;장도현
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2003년도 춘계전력전자학술대회 논문집(2)
    • /
    • pp.677-680
    • /
    • 2003
  • The control of the SRM(Switched Reluctance Motor) is usually based on the non-linear inductance profiles with positions. So determination of optimal switching angle is very different. we present self-tuning control of SRM for maximum torque and efficiency with phase current and shaft position sensor During the sample time, micro-controller checks the number of pre-checked pulse. After micro-controller calculates between two data, it move forward or backward turn-off angle. When the turn-off angle is fixed optimal turn-off angle, turn-on angle moves forward or backward by a step using self-tuning control method. And then, optimal turn-off angle is searched once again. As such a repeating process, turn-on/off angle is moves automatically to obtain the maximum torque and efficiency. The experimental results are presented to validate the self-tuning algorithm.

  • PDF