• Title/Summary/Keyword: Linear Structures

Search Result 2,391, Processing Time 0.028 seconds

Estimation and Analysis of the Vertical Profile Parameters Using HeMOSU-1 Wind Data (HeMOSU-1 풍속자료를 이용한 연직 분포함수의 매개변수 추정 및 분석)

  • Ko, Dong-Hui;Cho, Hong-Yeon;Lee, Uk-Jae
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.33 no.3
    • /
    • pp.122-130
    • /
    • 2021
  • A wind-speed estimation at the arbitrary elevations is key component for the design of the offshore wind energy structures and the computation of the wind-wave generation. However, the wind-speed estimation of the target elevation has been carried out by using the typical functions and their typical parameters, e.g., power and logarithmic functions because the available wind speed data is limited to the specific elevation, such as 2~3m, 10 m, and so on. In this study, the parameters of the vertical profile functions are estimated with optimal and analyzed the parameter ranges using the HeMOSU-1 platform wind data monitored at the eight different locations. The results show that the mean value of the exponent of the power function is 0.1, which is significantly lower than the typically recommended value, 0.14. The values of the exponent, the friction velocity, and the roughness parameters are in the ranges 0.0~0.3, 0~10 (m/s), and 0.0~1.0 (m), respectively. The parameter ranges differ from the typical ranges because the atmospheric stability condition is assumed as the neutral condition. To improve the estimation accuracy, the atmospheric condition should be considered, and a more general (non-linear) vertical profile functions should be introduced to fit the diverse profile patterns and parameters.

Free Vibration Analysis of Circular Arches Considering Effects of Midsurface Extension and Rotatory Inertia Using the Method of Differential Quadrature (미분구적법을 이용 중면신장 및 회전관성의 영향을 고려한 원형아치의 고유진동해석)

  • Kang, Ki-Jun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.1
    • /
    • pp.9-17
    • /
    • 2021
  • Curved beams are increasingly used in buildings, vehicles, ships, and aircraft, which has resulted in considerable effort being directed toward developing an accurate method for analyzing the dynamic behavior of such structures. The stability behavior of elastic circular arches has been the subject of a large number of investigations. One of the efficient procedures for the solution of ordinary differential equations or partial differential equations is the differential quadrature method DQM. This method has been applied to a large number of cases to overcome the difficulties of the complex computer algorithms, as well as excessive use of storage due to conditions of non-linear geometries, loadings, or material properties. This study uses DQM to analyze the in-plane vibration of the circular arches considering the effects of midsurface extension and rotatory inertia. Fundamental frequency parameters are calculated for the member with various parameter ratios, boundary conditions, and opening angles. The solutions from DQM are compared with exact solutions or other numerical solutions for cases in which they are available and given to analyze the effects of midsurface extension and rotatory inertia on the frequency parameters of the circular arches.

Damage Detection of Non-Ballasted Plate-Girder Railroad Bridge through Machine Learning Based on Static Strain Data (정적 변형률 데이터 기반 머신러닝에 의한 무도상 철도 판형교의 손상 탐지)

  • Moon, Taeuk;Shin, Soobong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.24 no.6
    • /
    • pp.206-216
    • /
    • 2020
  • As the number of aging railway bridges in Korea increases, maintenance costs due to aging are increasing and continuous management is becoming more important. However, while the number of old facilities to be managed increases, there is a shortage of professional personnel capable of inspecting and diagnosing these old facilities. To solve these problems, this study presents an improved model that can detect Local damage to structures using machine learning techniques of AI technology. To construct a damage detection machine learning model, an analysis model of the bridge was set by referring to the design drawing of a non-ballasted plate-girder railroad bridge. Static strain data according to the damage scenario was extracted with the analysis model, and the Local damage index based on the reliability of the bridge was presented using statistical techniques. Damage was performed in a three-step process of identifying the damage existence, the damage location, and the damage severity. In the estimation of the damage severity, a linear regression model was additionally considered to detect random damage. Finally, the random damage location was estimated and verified using a machine learning-based damage detection classification learning model and a regression model.

A Comparative Study of Reservoir Surface Area Detection Algorithm Using SAR Image (SAR 영상을 활용한 저수지 수표면적 탐지 알고리즘 비교 연구)

  • Jeong, Hagyu;Park, Jongsoo;Lee, Dalgeun;Lee, Junwoo
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.6_3
    • /
    • pp.1777-1788
    • /
    • 2022
  • The reservoir is a major water supply source in the domestic agricultural environment, and the monitoring of water storage of reservoirs is important for the utilization and management of agricultural water resource. Remote sensing via satellite imagery can be an effective method for regular monitoring of widely distributed objects such as reservoirs, and in this study, image classification and image segmentation algorithms are applied to Sentinel-1 Synthetic Aperture Radar (SAR) imagery for water body detection in 53 reservoirs in South Korea. Six algorithms are used: Neural Network (NN), Support Vector Machine (SVM), Random Forest (RF), Otsu, Watershed (WS), and Chan-Vese (CV), and the results of water body detection are evaluated with in-situ images taken by drones. The correlations between the in-situ water surface area and detected water surface area from each algorithm are NN 0.9941, SVM 0.9942, RF 0.9940, Otsu 0.9922, WS 0.9709, and CV 0.9736, and the larger the scale of reservoir, the higher the linear correlation was. WS showed low recall due to the undetected water bodies, and NN, SVM, and RF showed low precision due to over-detection. For water body detection through SAR imagery, we found that aquatic plants and artificial structures can be the error factors causing undetection of water body.

A Study on the Particle Size of Sand to Prevent Penetration of Subterranean Termite (Reticulitermes speratus kyushuensis) in Wooden Buildings (국내 지중흰개미의 목조건축물 유입 차단을 위한 모래의 적정 입도 연구)

  • Kim, Si Hyun;Kim, Tae Heon;Chung, Yong Jae
    • Journal of Conservation Science
    • /
    • v.38 no.2
    • /
    • pp.80-86
    • /
    • 2022
  • Termites cause massive damage to wooden architectural heritage structures. Chemical treatments have been commonly used to control them. In foreign countries, physical barriers made of sheet and particles impenetrable to termite are being used as an alternative to the chemical method. To study the efficacy of physical barriers, we investigated the appropriate sand particle size that can prevent the penetration of R. speratus kyushuensis. Upon evaluating the barrier properties of sand with particle sizes ranging from 0.85 to 4.00 mm, the penetration of termites was found to be effectively blocked at a particle size range of 1.00 to 2.80 mm. At smaller particle sizes, termites managed to move the sand particles and build an almost linear mud tube to penetrate the sand layer. At larger particle sizes, the termites could penetrate the sand layer by passing through the sand gaps.

Calculation of optimal design flood using cost-benefit analysis with uncertainty (불확실성이 고려된 비용-편익분석 기법을 도입한 최적설계홍수량 산정)

  • Kim, Sang Ug;Choi, Kwang Bae
    • Journal of Korea Water Resources Association
    • /
    • v.55 no.6
    • /
    • pp.405-419
    • /
    • 2022
  • Flood frequency analysis commonly used to design the hydraulic structures to minimize flood damage includes uncertainty. Therefore, the most appropriate design flood within a uncertainty should be selected in the final stage of a hydraulic structure, but related studies were rarely carried out. The total expected cost function introduced into the flood frequency analysis is a new approach for determining the optimal design flood. This procedure has been used as UNCODE (UNcertainty COmpliant DEsign), but the application has not yet been introduced in South Korea. This study introduced the mathematical procedure of UNCODE and calculated the optimal design flood using the annual maximum inflow of hydroelectric dams located in the Bukhan River system and results were compared with that of the existing flood frequency. The parameter uncertainty was considered in the total expected cost function using the Gumbel and the GEV distribution, and the Metropolis-Hastings algorithm was used to sample the parameters. In this study, cost function and damage function were assumed to be a first-order linear function. It was found that the medians of the optimal design flood for 4 Hydroelectric dams, 2 probability distributions, and 2 return periods were calculated to be somewhat larger than the design flood by the existing flood frequency analysis. In the future, it is needed to develop the practical approximated procedure to UNCODE.

Perceptual discrimination of wh-scopes in Gyeongsang Korean (경상 방언 의문문 작용역의 지각 구분)

  • Yun, Weonhee
    • Phonetics and Speech Sciences
    • /
    • v.14 no.2
    • /
    • pp.1-10
    • /
    • 2022
  • A wh-phrase positioned in an embedded clause can be interpreted as having a matrix scope if the sentence is produced with proper prosodic structures such as the wh-intonation. In a previous experiment, a sentence with a wh-phrase in an embedded clause was given to 40 speakers of Gyeongsang Korean. A script containing the sentence was provided to induce a matrix scope interpretation for the wh-phrase. These 40 utterances were prepared as stimuli for a perception test to verify whether the wh-phrases in the stimuli were perceived as having matrix scopes. Each utterance was played thrice to 24 subjects. The results showed that more than half of the 72 responses indicated a preference for an embedded scope rather than a matrix scope in 20 of the utterances. A multiple linear regression analysis showed that the matrix scope responses were best predicted by the magnitude of the pitch prominence in a prosodic word consisting of an embedded verb and a complementizer. The pitch prominence was calculated by subtracting the fundamental frequency (F0) at the right edge of the prosodic word from the peak F0 in the same prosodic word. The smaller the magnitude, the more matrix responses there were. These results suggest that the categorical perception of wh-scopes is based on the magnitude of pitch prominence.

Evaluation of Mechanical Performance Considering Prolonged Length of Glass Fiber-Reinforced Composite on Structure Weakness by Thermal Stress at Secondary Barrier in Cryogenic Liquified Gas Storage (극저온 액화가스 화물창 2차방벽 구조 열 응력 취약 부 Prolonged 길이 고려 유리섬유 강화 복합재 기계적 물성 평가)

  • Yeon-Jae Jeong;Hee-Tae Kim;Jeong-Dae Kim;Jeong-Hyun Kim;Seul-Kee Kim;Jae-Myung Lee
    • Composites Research
    • /
    • v.36 no.4
    • /
    • pp.246-252
    • /
    • 2023
  • A secondary barrier made of glass fiber reinforced composites has been installed infinitely using automatic bonding machine(ABM) in membrane type LNG cargo containment system (CCS). At the same time, significant thermal stress due to cryogenic heat shrinkage has occurred in the composite on the non-bonding area between the adhesive fixation at both ends. There have been studies from the perspective of structural safety evaluation taking this into account, but none that have analyzed mechanical property taking an prolonged length into account. In this study, 2-parameter Weibull distribution statistical analysis was used to standardize reliable mechanical property for actual length, taking into account the composite's brittle fracture of ceramic material with wide fracture strength dispersion. Related experimental data were obtained by performing uniaxial tensile tests at specific temperatures below cryogenic condition considering LNG environment. As a result, the mechanical strength increased about 1.5 times compared to -20℃ at -70℃ and initial non-linear behavior of fiber stretched was suppressed. As the temperature decreased until the cryogenic, the mechanical strength continued to increase due to cold brittleness. The suggested mechanical property in this study would be employed to secure reliable analysis support material property when assessing the safety of secondary barrier's structures.

Application of Effective Earthquake Force by the Boundary Reaction Method and a PML for Nonlinear Time-Domain Soil-Structure Interaction Analysis of a Standard Nuclear Power Plant Structure (원전구조물의 비선형 시간영역 SSI 해석을 위한 경계반력법에 의한 유효지진하중과 PML의 적용)

  • Lee, Hyeok Ju;Lim, Jae Sung;Moon, Il Hwan;Kim, Jae Min
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.27 no.1
    • /
    • pp.25-35
    • /
    • 2023
  • Considering the non-linear behavior of structure and soil when evaluating a nuclear power plant's seismic safety under a beyond-design basis earthquake is essential. In order to obtain the nonlinear response of a nuclear power plant structure, a time-domain SSI analysis method that considers the nonlinearity of soil and structure and the nonlinear Soil-Structure Interaction (SSI) effect is necessary. The Boundary Reaction Method (BRM) is a time-domain SSI analysis method. The BRM can be applied effectively with a Perfectly Matched Layer (PML), which is an effective energy absorbing boundary condition. The BRM has a characteristic that the magnitude of the response in far-field soil increases as the boundary interface of the effective seismic load moves outward. In addition, the PML has poor absorption performance of low-frequency waves. For this reason, the accuracy of the low-frequency response may be degraded when analyzing the combination of the BRM and the PML. In this study, the accuracy of the analysis response was improved by adjusting the PML input parameters to improve this problem. The accuracy of the response was evaluated by using the analysis response using KIESSI-3D, a frequency domain SSI analysis program, as a reference solution. As a result of the analysis applying the optimal PML parameter, the average error rate of the acceleration response spectrum for 9 degrees of freedom of the structure was 3.40%, which was highly similar to the reference result. In addition, time-domain nonlinear SSI analysis was performed with the soil's nonlinearity to show this study's applicability. As a result of nonlinear SSI analysis, plastic deformation was concentrated in the soil around the foundation. The analysis results found that the analysis method combining BRM and PML can be effectively applied to the seismic response analysis of nuclear power plant structures.

Fundamental studies on thermosolutal convection in mercurous bromide(Hg2Br2) physical vapor transport processes (브로민화 수은(I)(Hg2Br2) 물리적 증착공정에서 온도농도대류의 기초연구)

  • Geug Tae Kim;Moo Hyun Kwon
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.33 no.3
    • /
    • pp.110-115
    • /
    • 2023
  • During the Hg2Br2 physical vapor transport process, with increasing the partial pressure of component B, PB from 40 Torr to 200 Torr, a unicellular convective flow structures move from the crystal growth region to the center region in the vapor phase. The boundary layer flow is dominant for PB = 40 Torr, and the core region flow is dominant for PB = 200 Torr. The flow in the vapor phase shows a three-dimensional convective flow structure with a single cell (unicellular) for PB = 40 Torr and 200 Torr, exhibits an asymmetrical flow with respect to the x, y central axis under the horizontally oriented configuration with an aspect ratio (length-to-width) of 3 and linear conducting walls. The critical temperature difference between the source and crystal region is about 30 K. The total molar flux of Hg2Br2 increases with the temperature difference until the total molar flux reaches the critical value. At the critical total molar flux, the total molar flux abruptly decreases.