• Title/Summary/Keyword: Linear Structure Model

Search Result 1,189, Processing Time 0.029 seconds

Cumulative damage in RC frame buildings - The 2017 Mexico earthquake case

  • Leonardo M. Massone;Diego Aceituno;Julian Carrillo
    • Advances in Computational Design
    • /
    • v.8 no.1
    • /
    • pp.13-36
    • /
    • 2023
  • The Puebla-Morelos Earthquake (Mw 7.1) occurred in Mexico in 2017 causing 44 buildings to collapse in Mexico City. This work evaluates the non-linear response of a 6-story reinforced concrete (RC) frame prototype model with masonry infill walls on upper floors. The prototype model was designed using provisions prescribed before 1985 and was subjected to seismic excitations recorded during the earthquakes of 1985 and 2017 in different places in Mexico City. The building response was assessed through a damage index (DI) that considers low-cycle fatigue of the steel reinforcement in columns of the first floor, where the steel was modeled including buckling as was observed in cases after the 2017 earthquake. Isocurves were generated with 72 seismic records in Mexico City representing the level of iso-demand on the structure. These isocurves were compared with the location of 16 collapsed (first-floor column failure) building cases consistent with the prototype model. The isocurves for a value greater than 1 demarcate the location where fatigue failure was expected, which is consistent with the location of 2 of the 16 cases studied. However, a slight increase in axial load (5%) or decrease in column cross-section (5%) had a significant detrimental effect on the cumulated damage, increasing the intensity of the isocurves and achieving congruence with 9 of the 16 cases, and having the other 7 cases less than 2 km away. Including column special detailing (tight stirrup spacing and confined concrete) was the variable with the greatest impact to control the cumulated damage, which was consistent with the absence of severe damage in buildings built in the 70s and 80s.

Analysis of pile load distribution and ground behaviour depending on vertical offset between pile tip and tunnel crown in sand through laboratory model test (실내모형시험을 통한 사질토 지반에서 군말뚝과 터널의 수직 이격거리에 따른 하중분포 및 지반거동 분석)

  • Oh, Dong-Wook;Lee, Yong-Joo
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.19 no.3
    • /
    • pp.355-373
    • /
    • 2017
  • Tunnelling in urban areas, it is essential to understand existing structure-tunnel interactive behavior. Serviced structures in the city are supported by pile foundation, since they are certainly effected due to tunnelling. In this research, thus, pile load distribution and ground behavior due to tunnelling below grouped pile were investigated using laboratory model test. Grouped pile foundations were considered as 2, 3 row pile and offsets (between pile tip and tunnel crown: 0.5D, 1.0D and 1.5D for generalization to tunnel diameter, D means tunnel diameter). Soil in the tank for laboratory model test was formed by loose sand (relative density: Dr = 30%) and strain gauges were attached to the pile inner shaft to estimate distribution of axial force. Also, settlements of grouped pile and adjacent ground surface depending on the offsets were measured by LVDT and dial gauge, respectively. Tunnelling-induced deformation of underground was measured by close range photogrammetric technique. Numerical analysis was conducted to analyze and compare with results from laboratory model test and close range photogrammetry. For expression of tunnel excavation, the concept of volume loss was applied in this study, it was 1.5%. As a result from this study, far offset, the smaller reduction of pile axial load and was appeared trend of settlement was similar among them. Particulary, ratio of pile load and settlement reduction were larger when the offset is from 0.5D to 1.0D than from 1.0D to 1.5D.

An Accelerated IK Solver for Deformation of 3D Models with Triangular Meshes (삼각형 메쉬로 이루어진 3D 모델의 변형을 위한 IK 계산 가속화)

  • Park, Hyunah;Kang, Daeun;Kwon, Taesoo
    • Journal of the Korea Computer Graphics Society
    • /
    • v.27 no.5
    • /
    • pp.1-11
    • /
    • 2021
  • The purpose of our research is to efficiently deform a 3D models which is composed of a triangular mesh and a skeleton. We designed a novel inverse kinematics (IK) solver that calculates the updated positions of mesh vertices with fewer computing operations. Through our user interface, one or more markers are selected on the surface of the model and their target positions are set, then the system updates the positions of surface vertices to construct a deformed model. The IK solving process for updating vertex positions includes many computations for obtaining transformations of the markers, their affecting joints, and their parent joints. Many of these computations are often redundant. We precompute those redundant terms in advance so that the 3-nested loop computation structure was improved to a 2-nested loop structure, and thus the computation time for a deformation is greatly reduced. This novel IK solver can be adopted for efficient performance in various research fields, such as handling 3D models implemented by LBS method, or object tracking without any markers.

Modeling and Controller Design for Attitude Control of a Moving Satellite (이동하는 위성의 자세제어를 위한 모델링 및 제어기 설계)

  • Lee, Woo-Seung;Park, Chong-Kug
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.37 no.1
    • /
    • pp.19-29
    • /
    • 2000
  • Because the previous simulation tool for attitude control of satellite was designed for the modeling of rigid body and PD controller, the attitude error can be made more than the limitation value for keeping for communication link, and then the communication link can be lost at moving of satellite. So, for rapid attitude restoration and design of stable and modernized controller, the modelling of rigid body and flexible body structure for moving GEO and LEO satellites were performed. Also the minimum time controller is designed for the rapid restoration of attitude error at communication broken and to minimize the disconnection period from ground communication system during the satellite stationkeeping. The linear regulator is designed using the space state vector that is better than accuracy and stability of PD controller. Firstly the simulation was performed for comparison of the rigid and stability of PD controller. Firstly the simulation was performed for comparison of the rigid and flexible models using PD controller and the case of the pitch angle changing by ground command, and the case of the periodic north-south stationkeeping are performed for the analysis of response characteristics of each controller when the attitude is changed. As a result, the flexible body model represents more sililar results of real situation than the rigid body model. The minimum time controller can restore 7 times rapidly than PD controller for its lost attitude. The linear regulator has several merits for capability of adaptation against the external disturbance, stability and response time. In future, we can check the estimated results using this satellite model and controller for real operation. Futhermore the development of new controller and training can be supported.

  • PDF

Prediction and analysis of acute fish toxicity of pesticides to the rainbow trout using 2D-QSAR (2D-QSAR방법을 이용한 농약류의 무지개 송어 급성 어독성 분석 및 예측)

  • Song, In-Sik;Cha, Ji-Young;Lee, Sung-Kwang
    • Analytical Science and Technology
    • /
    • v.24 no.6
    • /
    • pp.544-555
    • /
    • 2011
  • The acute toxicity in the rainbow trout (Oncorhynchus mykiss) was analyzed and predicted using quantitative structure-activity relationships (QSAR). The aquatic toxicity, 96h $LC_{50}$ (median lethal concentration) of 275 organic pesticides, was obtained from EU-funded project DEMETRA. Prediction models were derived from 558 2D molecular descriptors, calculated in PreADMET. The linear (multiple linear regression) and nonlinear (support vector machine and artificial neural network) learning methods were optimized by taking into account the statistical parameters between the experimental and predicted p$LC_{50}$. After preprocessing, population based forward selection were used to select the best subsets of descriptors in the learning methods including 5-fold cross-validation procedure. The support vector machine model was used as the best model ($R^2_{CV}$=0.677, RMSECV=0.887, MSECV=0.674) and also correctly classified 87% for the training set according to EU regulation criteria. The MLR model could describe the structural characteristics of toxic chemicals and interaction with lipid membrane of fish. All the developed models were validated by 5 fold cross-validation and Y-scrambling test.

The Evaluation of Bearing Resistance of Underreamed Ground Anchor through Realistic Model Experiments (실모형실험을 통한 지압형 앵커의 지압력 평가)

  • Min, Kyongnam;Lee, Jaewon;Lee, Junggwan;Lee, Dongwon;Jung, Chanmuk
    • Journal of the Korean GEO-environmental Society
    • /
    • v.15 no.9
    • /
    • pp.87-92
    • /
    • 2014
  • The Ground anchor is reinforcement to resist pull-out through ground that is used supports structure. The pull-out resistance of anchor is constructed by skin friction resistance from compression borehole wall in expanded wings and bearing pressure from the ground. Especially, underreamed ground anchor is reinforcement that adopts active reinforcement to prevent deformation of ground using bearing resistance generated reaming anchorage. This study is conducted to calculate bearing resistance of underreamed ground anchor. Realistic model tests were fulfilled to determine bearing resistance of anchor, and correlate results of tests to Uniaxial Compressive Strengths (UCS) of ground models that assumed weathered rock condition in 8 case. In a comprehensive series of the tests, the bearing resistances were measured by pull-out tests. The bearing resistances derived from tests have a linear correlation with UCS. We also suggest empirical equation between bearing resistance and UCS of rocks by single linear regression analyses. In test results of this study, the bearing resistances were evaluated approximately 13 times higher than UCS of the grounds, and it is qualitatively similar to numerical values of pull-out force derived from theory.

Stimulation of Blood Flow Needs a Parallel Magnetic Field and Psycho-physics acupuncture

  • Oh, Hung-Kuk
    • Proceedings of the Korean Society for Emotion and Sensibility Conference
    • /
    • 2000.11a
    • /
    • pp.105-112
    • /
    • 2000
  • The conventional model did not take momentum conservation into consideration when the electron absorbs and emits the photons. II-ray provides momentum conservations on any directions of the entering photons, and also the electrons have radial momentum conservations and fully elastic bouncing between two atoms, in the new atom model. Conventional atom model must be criticized on the following four points. (1) Natural motions between positive and negative entities are not circular motions but linear going and returning ones, fur examples sexual motion, tidal motion, day and night etc. Because the radius of hydrogen atom's electron orbit is the order of 10$^{-11}$ m and the radia of the nucleons in the nucleus are the order of 10$^{-l4}$m and then the converging $\pi$-gamma rays to the nucleus have so great circular momentum, the electron can not have a circular motion. We can say without doubt that any elementary mass particle can have only linear motion, because of the $\pi$-rays' hindrances, near the nucleus. (2) Potential energy generation was neglected when electron changes its orbit from outer one to inner one. The h v is the kinetic energy of the photo-electron. The total energy difference between orbits comprises kinetic and potential energies. (3) The structure of the space must be taken into consideration because the properties of the electron do not change during the transition from outer orbit to inner one even though it produces photon. (4) Total energy conservation law applies to the energy flow between mind and matter because we daily experiences a interconnection between mind and body. Any magnet absorbs n-rays to S pole and sends out the $\pi$-rays from N pole. Proton are constructed with the closed n-rays quantum-mechanically. The crystallizing n-bonding makes two $\pi$-far infrared rays of one wave length between two protons if two $\pi$-rays are supplied to each proton. It is easily done for a $\pi$-ray to be absorbed to a proton if there is a parallel magnetic flow to the blood flow because a $\pi$-ray advances axially under a magnetic field and a proton looks like a sphere. A axially advancing disk-like $\pi$-ray can meet more easily the coming spheres than from the other directions. The blood crystals stimulate the autonomous nerves on the blood vessels during the flow by their mechanical sliding collisions. SM n-ray meridian therapy and SMACN $\pi$-ray meridian therapy show the stimulation of blood flow and also combinational experiment between SM $\pi$-ray meridian therapy and n-ray psycho-physics acupuncture shows more clearly that magnet is forcing to make $\pi$-rays absorbed to the nucleons.s.ons.

  • PDF

A Critical Note on the Electric Field in Direct and Alternating Current and Its Consciousness

  • Oh, Hung-Kuk
    • Proceedings of the Korean Society for Emotion and Sensibility Conference
    • /
    • 2000.11a
    • /
    • pp.98-104
    • /
    • 2000
  • The conventional model did not take momentum conservation into consideration when the electron absorbs and emits the photons. II-ray provides momentum conservations on any directions of the entering photons, and also the electrons have radial momentum conservations and fully elastic bouncing between two atoms, in the new atom model. Conventional atom model must be criticized on the following four points. (1) Natural motions between positive and negative entities are not circular motions but linear going and returning ones, for examples sexual motion, tidal motion, day and night etc. Because the radius of hydrogen atom's electron orbit is the order of 10$^{-11}$ m and the radia of the nucleons in the nucleus are the order of 10$^{-14}$ m and then the converging $\pi$-gamma rays to the nucleus have so great circular momentum, the electron can not have a circular motion. We can say without doubt that any elementary mass particle can have only linear motion, because of the $\pi$-rays'hindrances, nearthenucleus. (2) Potential energy generation was neglected when electron changes its orbit from outer one to inner one. The h v is the kinetic energy of the photo-electron. The total energy difference between orbits comprises kinetic and potential energies. (3) The structure of the space must be taken into consideration because the properties of the electron do not change during the transition from outer orbit to inner one even though it produces photon. (4) Total energy conservation law applies to the energy flow between mind and matter because we daily experiences a interconnection between mind and body. Conventional Concept of Electric Field must be extended in the case of the direct and alternating current. Conventional concept is based on coulomb's force while the electric potential in the direct and alternating current is from Gibb's free energy. And also conventional concept has not any consciousness with human being but the latters has a conscious sensibility. The cell emf is from the kinetic energy of the open $\pi$-rays flow through the conducting wire. The electric potential in alternating current is from that the trans-orbital moving of the induced change of magnetic field in the wire produces flows of open $\pi$-rays, which push the rotating electrons on the orbital and then make the current flow. Human consciousness can induce a resonance with the sensibility of the open $\pi$-rays in the electric measuring equipment. Specially treated acupunctures with Nasucon is for sending an acupunctural effect from one place to another via space by someone's will power.

  • PDF

GEase-K: Linear and Nonlinear Autoencoder-based Recommender System with Side Information (GEase-K: 부가 정보를 활용한 선형 및 비선형 오토인코더 기반의 추천시스템)

  • Taebeom Lee;Seung-hak Lee;Min-jeong Ma;Yoonho Cho
    • Journal of Intelligence and Information Systems
    • /
    • v.29 no.3
    • /
    • pp.167-183
    • /
    • 2023
  • In the recent field of recommendation systems, various studies have been conducted to model sparse data effectively. Among these, GLocal-K(Global and Local Kernels for Recommender Systems) is a research endeavor combining global and local kernels to provide personalized recommendations by considering global data patterns and individual user characteristics. However, due to its utilization of kernel tricks, GLocal-K exhibits diminished performance on highly sparse data and struggles to offer recommendations for new users or items due to the absence of side information. In this paper, to address these limitations of GLocal-K, we propose the GEase-K (Global and EASE kernels for Recommender Systems) model, incorporating the EASE(Embarrassingly Shallow Autoencoders for Sparse Data) model and leveraging side information. Initially, we substitute EASE for the local kernel in GLocal-K to enhance recommendation performance on highly sparse data. EASE, functioning as a simple linear operational structure, is an autoencoder that performs highly on extremely sparse data through regularization and learning item similarity. Additionally, we utilize side information to alleviate the cold-start problem. We enhance the understanding of user-item similarities by employing a conditional autoencoder structure during the training process to incorporate side information. In conclusion, GEase-K demonstrates resilience in highly sparse data and cold-start situations by combining linear and nonlinear structures and utilizing side information. Experimental results show that GEase-K outperforms GLocal-K based on the RMSE and MAE metrics on the highly sparse GoodReads and ModCloth datasets. Furthermore, in cold-start experiments divided into four groups using the GoodReads and ModCloth datasets, GEase-K denotes superior performance compared to GLocal-K.

Frequency-Domain Equalizer Using 2-Dimensional LMS Algorithm for DWMT Based VDSL Transceiver (DWMT 기반 VDSL 송수신기를 위한 2차원 LMS 방식의 주파수 영역 등화기 구현)

  • 박태윤;최재호
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.25 no.4B
    • /
    • pp.629-634
    • /
    • 2000
  • In this paper, we describe the structure of the DWMT (discrete wavelet multitone) transceiver for VDSL system. The DWMT transceiver consists of the transmultiplexer using cosine modulation filter bank (CMFB), time domain equalizer (TEQ) and frequency domain equalizer (FEQ) minimizing the effects of the transmission channel. For FEQ, we have expanded the conventional l-D linear transversal equalizer into 2-dimensions, i.e. time and subchannel axes and we have implemented it using the 2-dimensional LMS methods. In order to qualify the performance of FEQ, we have applied it to the DWMT based VDSL transceiver and the equalizer's performance is verified by simulation using the VDSL line test model specified by the ANSI T1E1.4 requirements.

  • PDF