• 제목/요약/키워드: Linear Spring

검색결과 497건 처리시간 0.024초

병렬화된 비정렬 격자계를 이용한 3차원 비정상 점성 유동 계산 기법 개발 (Computation of 3-Dimensional Unsteady Viscous Plows Using an Parallel Unstructured Mesh)

  • 김주성;권오준
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2003년도 추계 학술대회논문집
    • /
    • pp.18-24
    • /
    • 2003
  • In the present study, solution algorithms for the connotation of unsteady flows on an unstructured mesh me presented Dual time stepping is incorporated to achieve the 2-nd order temporal accuracy while reducing the linearization and the factorization errors associated with a linear solver. Hence, any time step can be used by only considering physical phenomena. Gauss-Seidel scheme is used to solve linear system of equations. Rigid motion and suing analogy method for moving mesh are all considered and compared. Special treatments of suing analogy for high aspect ratio cells are presented. Finally, numerical results for oscillating ing are compared with experimental data.

  • PDF

Tracking control of variable stiffness hysteretic-systems using linear-parameter-varying gain-scheduled controller

  • Pasala, D.T.R.;Nagarajaiah, S.;Grigoriadis, K.M.
    • Smart Structures and Systems
    • /
    • 제9권4호
    • /
    • pp.373-392
    • /
    • 2012
  • Tracking control of systems with variable stiffness hysteresis using a gain-scheduled (GS) controller is developed in this paper. Variable stiffness hysteretic system is represented as quasi linear parameter dependent system with known bounds on parameters. Assuming that the parameters can be measured or estimated in real-time, a GS controller that ensures the performance and the stability of the closed-loop system over the entire range of parameter variation is designed. The proposed method is implemented on a spring-mass system which consists of a semi-active independently variable stiffness (SAIVS) device that exhibits hysteresis and precisely controllable stiffness change in real-time. The SAIVS system with variable stiffness hysteresis is represented as quasi linear parameter varying (LPV) system with two parameters: linear time-varying stiffness (parameter with slow variation rate) and stiffness of the friction-hysteresis (parameter with high variation rate). The proposed LPV-GS controller can accommodate both slow and fast varying parameter, which was not possible with the controllers proposed in the prior studies. Effectiveness of the proposed controller is demonstrated by comparing the results with a fixed robust $\mathcal{H}_{\infty}$ controller that assumes the parameter variation as an uncertainty. Superior performance of the LPV-GS over the robust $\mathcal{H}_{\infty}$ controller is demonstrated for varying stiffness hysteresis of SAIVS device and for different ranges of tracking displacements. The LPV-GS controller is capable of adapting to any parameter changes whereas the $\mathcal{H}_{\infty}$ controller is effective only when the system parameters are in the vicinity of the nominal plant parameters for which the controller is designed. The robust $\mathcal{H}_{\infty}$ controller becomes unstable under large parameter variations but the LPV-GS will ensure stability and guarantee the desired closed-loop performance.

Effect of nonlinearity of fastening system on railway slab track dynamic response

  • Sadeghi, Javad;Seyedkazemi, Mohammad;Khajehdezfuly, Amin
    • Structural Engineering and Mechanics
    • /
    • 제83권6호
    • /
    • pp.709-727
    • /
    • 2022
  • Fastening systems have a significant role in the response of railway slab track systems. Although experimental tests indicate nonlinear behavior of fastening systems, they have been simulated as a linear spring-dashpot element in the available literature. In this paper, the influence of the nonlinear behavior of fastening systems on the slab track response was investigated. In this regard, a nonlinear model of vehicle/slab track interaction, including two commonly used fastening systems (i.e., RFFS and RWFS), was developed. The time history of excitation frequency of the fastening system was derived using the short time Fourier transform. The model was validated, using the results of a comprehensive field test carried out in this study. The frequency response of the track was studied to evaluate the effect of excitation frequency on the railway track response. The results obtained from the model were compared with those of the conventional linear model of vehicle/slab track interaction. The effects of vehicle speed, axle load, pad stiffness, fastening preload on the difference between the outputs obtained from the linear and nonlinear models were investigated through a parametric study. It was shown that the difference between the results obtained from linear and nonlinear models is up to 38 and 18 percent for RWFS and RFFS, respectively. Based on the outcomes obtained, a nonlinear to linear correction factor as a function of vehicle speed, vehicle axle load, pad stiffness and preload was derived. It was shown that consideration of the correction factor compensates the errors caused by the assumption of linear behavior for the fastening systems in the currently used vehicle track interaction models.

DC 모터 드라이버의 비선형성을 고려한 전자식 스로틀 바디 모델 (Electronic Throttle Body Model Allowing for Non-linearity of DC Motor Driver)

  • 진성태;강종진;이우택
    • 한국자동차공학회논문집
    • /
    • 제16권1호
    • /
    • pp.71-77
    • /
    • 2008
  • This paper proposes an Electronic Throttle Body (ETB) model considering a non-linearity of DC motor driver which is integrated with a H-bridge and a gate driver. A propagation delay and reverse recovery time of switching components cause non-linear characteristic of DC motor driver. This non-linearity affects not only the amateur voltage of DC motor, but also entire behaviour and parameters of ETB. In order to analyze the behavior of ETB more accurately, this non-linear effect of DC motor driver is modeled. The developed ETB model is validated by use of the step response and ramp response experiments, and it shows relatively accurate results compared with linear DC motor driver model.

Enhancement of wave-energy-conversion efficiency of a single power buoy with inner dynamic system by intentional mismatching strategy

  • Cho, I.H.;Kim, M.H.
    • Ocean Systems Engineering
    • /
    • 제3권3호
    • /
    • pp.203-217
    • /
    • 2013
  • A PTO (power-take-off) mechanism by using relative heave motions between a floating buoy and its inner mass (magnet or amateur) is suggested. The inner power take-off system is characterized by a mass with linear stiffness and damping. A vertical truncated cylinder is selected as a buoy and a special station-keeping system is proposed to minimize pitch motions while not affecting heave motions. By numerical examples, it is seen that the maximum power can actually be obtained at the optimal spring and damper condition, as predicted by the developed WEC(wave energy converter) theory. Then, based on the developed theory, several design strategies are proposed to further enhance the maximum PTO, which includes the intentional mismatching among heave natural frequency of the buoy, natural frequency of the inner dynamic system, and peak frequency of input wave spectrum. By using the intentional mismatching strategy, the generated power is actually increased and the required damping value is significantly reduced, which is a big advantage in designing the proposed WEC with practical inner LEG (linear electric generator) system.

다중선형 회귀모형과 천리안 지면온도를 활용한 토양수분 산정 연구 (Estimation of Soil Moisture Using Multiple Linear Regression Model and COMS Land Surface Temperature Data)

  • 이용관;정충길;조영현;김성준
    • 한국농공학회논문집
    • /
    • 제59권1호
    • /
    • pp.11-20
    • /
    • 2017
  • This study is to estimate the spatial soil moisture using multiple linear regression model (MLRM) and 15 minutes interval Land Surface Temperature (LST) data of Communication, Ocean and Meteorological Satellite (COMS). For the modeling, the input data of COMS LST, Terra MODIS Normalized Difference Vegetation Index (NDVI), daily rainfall and sunshine hour were considered and prepared. Using the observed soil moisture data at 9 stations of Automated Agriculture Observing System (AAOS) from January 2013 to May 2015, the MLRMs were developed by twelve scenarios of input components combination. The model results showed that the correlation between observed and modelled soil moisture increased when using antecedent rainfalls before the soil moisture simulation day. In addition, the correlation increased more when the model coefficients were evaluated by seasonal base. This was from the reverse correlation between MODIS NDVI and soil moisture in spring and autumn season.

부재간 결합부의 동적 특성 분석 및 강성 예측 (Analysis of the Dynamical Characteristics and Prediction of Stiffness for the Joint between Members)

  • 윤성호
    • 한국기계가공학회지
    • /
    • 제18권2호
    • /
    • pp.58-64
    • /
    • 2019
  • This paper describes the analysis of dynamic characteristics and prediction of the stiffness for the joint between structural members. In the process of deriving the governing equations, the stiffness values responsible for the moment and shear force were modelled by using linear and torsional springs in the middle of a clamped-clamped beam. The sensitivities of the natural frequency and modal assurance criterion were investigated as a function of the dimensionless linear and torsional spring stiffness. The reliability of the predictions for the linear and torsional stiffness values was verified by the inverse computations of the stiffness matrix. The predictive and exact theoretical stiffness values were compared for the stiffness element in the finite element formulation, and their results show an excellent correlation. It is strongly anticipated that although the proposed methodology is currently limited to the analytical utilization, it will provide a useful tool to estimate unknown joint stiffness values based on the experimental natural frequency and mode shape.

가압경수로용 환형 실린더 연료봉의 단면치수와 스팬길이에 따른 진동특성해석 (Vibration Characteristic Analysis of an Annular Cylindrical PWR Fuel Rod according to the Cross-sectional Dimensions and the Span Length)

  • 이강희;김재용;이영호;윤경호;김형규
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2007년도 춘계학술대회논문집
    • /
    • pp.197-201
    • /
    • 2007
  • Vibration characteristics of an annular cylindrical fuel rod, which was proposed as a candidate design of fuel's cross section for the ultra-high burnup nuclear fuel, according to the cross-sectional dimensions and the number of supports or the span length were analytically studied. Finite element(FE) modeling for the annular cross sectional fuel was based on the methodology, that have been proven by the test verification, for the conventional PWR nuclear fuel rod. A commercial FEA code, ABAQUS, was used for the FE modeling and analysis. A planar beam element (B21) that uses a linear interpolation was used for the fuel rod and a linear spring element for the spring and dimple of the SG. Natural frequencies and mode shape were calculated according to the preliminary design candidates for the fuel's cross sectional dimension and the number of span. From the analysis results, the design scheme of the annular fuel compatible to the present PWR nuclear reactor core was discussed in terms of the number of supports and fuel's cross section.

  • PDF

박판판재 경화를 고려한 다이 캠 드라이브의 구조해석 최적화에 대한연구 (A Study on the Structure Analysis Optimization of Die Cam Drive Considering the Thin Plate Hardening)

  • 이종배;김선삼;우창기
    • 한국산학기술학회논문지
    • /
    • 제16권9호
    • /
    • pp.5769-5777
    • /
    • 2015
  • 프레스 가공에서 포밍이나 굽힘 등의 변형에 따라 판재는 가공경화를 발생하게 되며, 판재 경화와 가스 스프링 반력에 의한 캠 성형 과정에서 캠 및 판재의 변형과 미 성형이 발생하게 된다. 본 연구는 알루미늄 판재 성형 과정에서 판재경화를 고려한 응력, 변형이 주어진 판재 물성치와 캠 성형 압력에 맞게 입력 값으로 처리하였다. 그리고 유한요소 해석툴인 Hyperstudy와 Abaqus 연동으로 캠 형상을 비선형적으로 형상 최적화 해석을 수행 했다. 그 결과 판재의 변형이 제거 되면서 허용되는 최대, 최소 응력 범위와 최소 변형을 갖는 조건하에서 캠 형상을 최적화 하였다. 따라서 해석 결과를 통해 응력-변형 곡선과 응력-두께의 정규 분포도를 얻을 수 있었고, 또한 Iteration 처리로 판재 경화와 가스 스프링 반력을 고려한 다이캠 두께에 맞는 응력과 변형에 대한 최적화 형상을 얻을 수 있었다.

양방향 스털링엔진의 선형발전기 설계에 관한 연구 (A Study on Design of the Linear Generator in the Double Acting Stirling Engine)

  • 박성제;고준석;홍용주;김효봉;염한길;인세환
    • 한국수소및신에너지학회논문집
    • /
    • 제26권6호
    • /
    • pp.638-644
    • /
    • 2015
  • This paper describes the continuing effort to analysis and design on dynamic and electrical behavior of gamma-type free piston Stirling engine/generator with dual-opposed linear generator for domestic micro-CHP (Combined Heat and Power) system. The double acting Stirling engine/generator has one displacer and two power piston which are supported by flexure springs. Two power pistons oscillate with symmetric sinusoidal displacement and are connected with moving magnet type linear generators for power generation. To operate Stirling engine/generator, combustion heat of natural gas is supplied to hot-end and heat is rejected from cold-end by cooling water. The temperature difference across the displacer induces the oscillating motion, and it can be explained with mass-spring vibration system. The purpose of this paper is to describe the design process of linear generator for the double acting free-piston Stirling engine.