• 제목/요약/키워드: Linear Spectral Unmixing

검색결과 15건 처리시간 0.03초

Linear Spectral Unmixing 기법을 이용한 하이퍼스펙트럴 영상의 Sub-Pixel Detection에 관한 연구 (A Study of Sub-Pixel Detection for Hyperspectral Image Using Linear Spectral Unmixing Algorithm)

  • 김대성;조영욱;한동엽;김용일
    • 한국측량학회:학술대회논문집
    • /
    • 한국측량학회 2003년도 춘계학술발표회 논문집
    • /
    • pp.161-166
    • /
    • 2003
  • Hyperspectral imagery have high spectral resolution and provide the potential for more accurate and detailed information extraction than any other type of remotely sensed data. In this paper, the "Linear Spectral Unmixing" model which is one solution to overcome the limit of spatial resolution for remote sensing data was introduced and we applied the algorithm to hyperspectral image. The result was not good because of some problems such as image calibration and used endmembers. Therefore, we analyzed the cause and had a search for a solution.

  • PDF

Hyperion 영상의 제약선형분광혼합분석 기반 무감독 Endmember 추출 최적화 기법 (Unsupervised Endmember Selection Optimization Process based on Constrained Linear Spectral Unmixing of Hyperion Image)

  • 최재완;김용일;유기윤
    • 한국측량학회:학술대회논문집
    • /
    • 한국측량학회 2006년도 춘계학술발표회 논문집
    • /
    • pp.211-216
    • /
    • 2006
  • The Constrained Linear Spectral Unmixing(CLSU) is investigated for sub-pixel image processing, Its result is the abundance map which mean fractions of endmember existing in a mixed pixel. Compared to the Linear Spectral Unmixing using least square method, CLSU uses the NNLS (Non-Negative Least Square) algorithm to guarantee that the estimated fractions are constrained. But, CLSU gets Into difficulty in image processing due to select endmember at a user's disposition. In this study, endmember selection optimization method using entropy in the error-image analysis is proposed. In experiments which is used hyperion image, it is shown that our method can select endmember number than CLSU based on unsupervised endemeber selection.

  • PDF

Detection of Microphytobenthos Using Spectral Unmixing Method in the Saemangeum Tidal Flat, Korea

  • Lee, Y.K.;Won, J.S.;Ryu, J.H.
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2003년도 Proceedings of ACRS 2003 ISRS
    • /
    • pp.853-855
    • /
    • 2003
  • Microphytobenthos that supply nutrients to the intertidal ecosystem play an important part as a primary producer. If we estimate distribution and density of microphytobenthos, we can possibly calculate a volume of primary product in the tidal flat and its effect to the intertidal ecosystem. To estimate the portion of microphytobenthos, we used a linear spectral unmixing (LSU) method. LSU is a tool for inference the proportions of the pure components (or end-members) in a mixed pixel. The selection of end-members is critical to LSU. The end-members can be selected either from spectral libraries built from field surveys or from a remotely sensed image. We compared the two approaches of end-member selection, and the preliminary results showed end-members from from spectral library are as effective as those from image itself.

  • PDF

무감독 Endmember 추출을 통한 하이퍼스펙트럴 영상의 제약 선형분광혼합분석에 관한 연구 (A Study on Constrained Linear Spectral Unmixing of Hyperspectral Imagery based on Unsupervised Endmember Selection)

  • 최재완;김대성;김용일
    • 한국공간정보시스템학회:학술대회논문집
    • /
    • 한국공간정보시스템학회 2005년도 추계학술대회
    • /
    • pp.35-39
    • /
    • 2005
  • 선형혼합분광분석(LSU, Linear Spectral Unmixing) 모델은 위성 영상의 한 화소 값이 공간 내에 포함된 다양한 지표 대상물의 반사에너지가 혼합된 결과로 나타난다는 가정을 통해 화소이하(Sub-Pixel) 단위의 영상 분석을 수행하는 알고리즘의 한 형태이다. 분석의 결과는 한 화소에 존재하는 순수 대상물(Endmember)의 비율로 나타나며, 최소제곱법을 이용하여 결과를 도출하는 것이 일반적인 방법으로 알려져 있다. 하지만, 최소제곱법을 이용한 선형혼합분광분석모델은 기본적인 가정을 만족시키지 못하며, Endmember를 사용자가 임의로 지정해야 하기 때문에 영상 분석에 많은 어려움이 있다. 이런 단점을 극복하기 위해 무감독으로 추출된 Endmember를 이용한 제약선형분광혼합분석(Constrained Linear Spectral Unmixing) 모델을 본 연구를 통해 제안하고자 한다. 결과를 통해, 무감독 제약선형분광혼합분석 모델은 선형분광혼합분석 모델에 비해 각각의 Endmember에 대하여 제약조건을 만족하는 점유비율(Abundance) 정보를 제공하였으나, 비슷한 Endmember를 중복 추출할 수 있는 가능성도 지니고 있음을 확인할 수 있었다.

  • PDF

Detection of Microphytobenthos in the Saemangeum Tidal Flat by Linear Spectral Unmixing Method

  • Lee Yoon-Kyung;Ryu Joo-Hyung;Won Joong-Sun
    • 대한원격탐사학회지
    • /
    • 제21권5호
    • /
    • pp.405-415
    • /
    • 2005
  • It is difficult to classify tidal flat surface that is composed of a mixture of mud, sand, water and microphytobenthos. We used a Linear Spectral Unmixing (LSU) method for effectively classifying the tidal flat surface characteristics within a pixel. This study aims at 1) detecting algal mat using LSU in the Saemangeum tidal flats, 2) determining a suitable end-member selection method in tidal flats, and 3) find out a habitual characteristics of algal mat. Two types of end-member were built; one is a reference end-member derived from field spectrometer measurements and the other image end-member. A field spectrometer was used to measure spectral reflectance, and a spectral library was accomplished by shape difference of spectra, r.m.s. difference of spectra, continuum removal and Mann-Whitney U-test. Reference end-members were extracted from the spectral library. Image end-members were obtained by applying Principle Component Analysis (PCA) to an image. The LSU method was effective to detect microphytobenthos, and successfully classified the intertidal zone into algal mat, sediment, and water body components. The reference end-member was slightly more effective than the image end-member for the classification. Fine grained upper tidal flat is generally considered as a rich habitat for algal mat. We also identified unusual microphytobenthos that inhabited coarse grained lower tidal flats.

Test Application of KOMPSAT-2 to the Detection of Microphytobenthos in Tidal Flats

  • Won Joong-Sun;Lee Yoon-Kyung;Choi Jaewon
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2005년도 Proceedings of ISRS 2005
    • /
    • pp.249-252
    • /
    • 2005
  • Microphytobenthos bloom from late January to early March in Korean tidal flats. KOMPSAT-2 will provide multi-spectral images with a spatial resolution of 4 m comparable with IKONOS. Using IKONOS and Landsat data, algal mat detection was tested in the Saemangeum area~ Micro-benthic diatoms are abundant and a major primary product in the tidal flats. A linear spectral unmixing (LSU) method was applied to the test data. LSU was effective to detect algal mat and the classified algal mat fraction well correlated with NDVI image. Fine grained upper tidal flats are generally known to be the best environment for algal mat. Algal mat thriving in coarse grained lower tidal flats as well as upper tidal flats were reported in this study. A high resolution multi-spectral sensor in KOMPSAT-2 will provide useful data for long-term monitoring of microphytobenthos in tidal flats.

  • PDF

초분광 위성영상을 이용한 수심산정에 관한 연구 (A Study on Estimation of Water Depth Using Hyperspectral Satellite Imagery)

  • 유영화;김윤수;이선구
    • 항공우주기술
    • /
    • 제7권1호
    • /
    • pp.216-222
    • /
    • 2008
  • 본 연구에서는 초분광 원격탐사 기법을 이용하여 선박의 접근이 어려운 연안지역의 수심을 산정하고자 한다. 연구에 사용된 영상은 초분광 위성영상인 EO-1 Hyperion 영상이며, 대기보정 및 기하보정을 실시하였다. 보정된 영상은 MNF 변환을 사용하여 밴드를 압축하였다. 또한 각 화소의 실제적인 수심을 산정하기 위하여 대상지역의 Diffuse Attenuation Coefficient를 영상내에서 결정하였다. 그리고 Linear Spectral Unmixing 기법을 사용하여 대상 화소의 Emdmember를 결정하고, 수심을 산정하였다.

  • PDF

Extraction of the aquaculture farms information from the Landsat- TM imagery of the Younggwang coastal area

  • Shanmugam, P.;Ahn, Yu-Hwan;Yoo, Hong-Ryong
    • 한국GIS학회:학술대회논문집
    • /
    • 한국GIS학회 2004년도 GIS/RS 공동 춘계학술대회 논문집
    • /
    • pp.493-498
    • /
    • 2004
  • The objective of the present study is to compare various conventional and recently evolved satellite image-processing techniques and to ascertain the best possible technique that can identify and position of aquaculture farms accurately in and around the Younggwang coastal area. Several conventional techniques performed to extract such information fiom the Landsat-TM imagery do not seem to yield better information about the aquaculture farms, and lead to misclassification. The large errors between the actual and extracted aquaculture farm information are due to existence of spectral confusion and inadequate spatial resolution of the sensor. This leads to possible occurrence of mixture pixels or 'mixels' of the source of errors in the classification techniques. Understanding the confusing and mixture pixel problems requires the development of efficient methods that can enable more reliable extraction of aquaculture farm information. Thus, the more recently evolved methods such as the step-by-step partial spectral end-member extraction and linear spectral unmixing methods are introduced. The farmer one assumes that an end-member, which is often referred to as 'spectrally pure signature' of a target feature, does not appear to be a spectrally pure form, but always mix with the other features at certain proportions. The assumption of the linear spectral unmxing is that the measured reflectance of a pixel is the linear sum of the reflectance of the mixture components that make up that pixel. The classification accuracy of the step-by-step partial end-member extraction improved significantly compared to that obtained from the traditional supervised classifiers. However, this method did not distinguish the aquaculture ponds and non-aquaculture ponds within the region of the aquaculture farming areas. In contrast, the linear spectral unmixing model produced a set of fraction images for the aquaculture, water and soil. Of these, the aquaculture fraction yields good estimates about the proportion of the aquaculture farm in each pixel. The acquired proportion was compared with the values of NDVI and both are positively correlated (R$^2$ =0.91), indicating the reliability of the sub-pixel classification.ixel classification.

  • PDF

Automatic Cross-calibration of Multispectral Imagery with Airborne Hyperspectral Imagery Using Spectral Mixture Analysis

  • Yeji, Kim;Jaewan, Choi;Anjin, Chang;Yongil, Kim
    • 한국측량학회지
    • /
    • 제33권3호
    • /
    • pp.211-218
    • /
    • 2015
  • The analysis of remote sensing data depends on sensor specifications that provide accurate and consistent measurements. However, it is not easy to establish confidence and consistency in data that are analyzed by different sensors using various radiometric scales. For this reason, the cross-calibration method is used to calibrate remote sensing data with reference image data. In this study, we used an airborne hyperspectral image in order to calibrate a multispectral image. We presented an automatic cross-calibration method to calibrate a multispectral image using hyperspectral data and spectral mixture analysis. The spectral characteristics of the multispectral image were adjusted by linear regression analysis. Optimal endmember sets between two images were estimated by spectral mixture analysis for the linear regression analysis, and bands of hyperspectral image were aggregated based on the spectral response function of the two images. The results were evaluated by comparing the Root Mean Square Error (RMSE), the Spectral Angle Mapper (SAM), and average percentage differences. The results of this study showed that the proposed method corrected the spectral information in the multispectral data by using hyperspectral data, and its performance was similar to the manual cross-calibration. The proposed method demonstrated the possibility of automatic cross-calibration based on spectral mixture analysis.

EO-1 Hyperion 영상을 이용한 연안해역의 수심 추출 (Extraction of Water Depth in Coastal Area Using EO-1 Hyperion Imagery)

  • 서동주;김진수
    • 한국정보통신학회논문지
    • /
    • 제12권4호
    • /
    • pp.716-723
    • /
    • 2008
  • 최근 과학기술의 급속한 발달과 더불어 인간의 활동 영역이 넓어짐으로써 연안해역 개발과 환경 등의 문제가 전세계적으로 대두되고 있으며, 보다 광범위한 분석을 위해 위성영상을 활용이 증대되고 있는 실정이다. 본 연구는 보다 효율적인 연안해역의 수심 결정에 있어 하이퍼스펙트럴 위성영상을 활용하는데 그 목적을 둔다. 이를 위해 먼저 EO-1 Hyperion 위성영상에서 연구대상지에 해당하는 부분영상을 추출하고, 대기보정과 기하보정을 실시하였다. 그리고 MNF 변환을 통해 밴드를 압축하고, 수체의 특성을 분석하는데 적합한 밴드를 선정하였다. 선정된 밴드내에서 수심 산정을 위한 계수인 Kd를 결정하였으며, 순수한 분광 특성을 가진 화소의 endmember의 결정과 선형분광순수화 기법을 이용한 매핑을 통해 대상 연안의 수심을 최종적으로 결정하였다. 연구 결과, 산정 된 수심은 수치해도상의 수심과 평균 1.2m 정도의 차이를 보였고, 산정 하고자 하는 수심이 깊을수록 오차는 크게 나타났다. 향후 대기보정, endmember 결정, Kd 산정 등의 정확도를 높인다면 보다 경제적이고 효율적인 수심 결정이 가능할 것으로 판단된다.