• Title/Summary/Keyword: Linear Slope Method

Search Result 232, Processing Time 0.03 seconds

Study on the Critical Storm Duration Decision of the Rivers Basin (중소하천유역의 임계지속시간 결정에 관한 연구)

  • Ahn, Seung-Seop;Lee, Hyeo-Jung;Jung, Do-June
    • Journal of Environmental Science International
    • /
    • v.16 no.11
    • /
    • pp.1301-1312
    • /
    • 2007
  • The objective of this study is to propose a critical storm duration forecasting model on storm runoff in small river basin. The critical storm duration data of 582 sub-basin which introduced disaster impact assessment report on the National Emergency Management Agency during the period from 2004 to 2007 were collected, analyzed and studied. The stepwise multiple regression method are used to establish critical storm duration forecasting models(Linear and exponential type). The results of multiple regression analysis discriminated the linear type more than exponential type. The results of multiple linear regression analysis between the critical storm duration and 5 basin characteristics parameters such as basin area, main stream length, average slope of main stream, shape factor and CN showed more than 0.75 of correlation in terms of the multi correlation coefficient.

A study of Improvement on the Road Drainage Poor Site (도로배수 취약구간의 개선방안에 대한 연구)

  • Lee, Man-Seok;Kim, Heung-Rae;Lee, Kyung-Ha;Kang, Min-Soo;Song, Min-Tae
    • International Journal of Highway Engineering
    • /
    • v.13 no.2
    • /
    • pp.125-131
    • /
    • 2011
  • This research aims to investigate the cause of the occurrence of a weak road drainage section scientifically and specifically through a site survey for a poorly drained section occurring due to rainfalls during road operation. This paper deeply reviewed the existing research results and current situation data on the poorly drained sections accumulated in Korea Expressway Corporation in order to investigate the cause of the occurrence of a weak road drainage section, and deeply verified and analyzed the weak sections for the road surface drainage facilities and the other road drainage facilities by visiting the expressway controlled by the 6 local headquarters and 33 branches of Korea Expressway Corporation. As a result of site surveys for the weak road drainage sections, i) in a road surface section, occurrence of ponding in the road shoulder pavement due to slope changes, bad collection of water in the collecting well at a median strip, shortage of road shoulder dike height, and inferior construction, etc. was analyzed to be the main cause of the occurrence of poorly drained sections, and ii) in a road neighborhood section, the occurrence of pavement height difference in a main road and shoulder section due to inferior ditches on a slope and the bad drain age at the inlet and outlet of a culvert due to soil deposits, debris, etc. were analyzed to be the main cause of the occurrence of weak sections. Proposed as a plan to improve the poorly drainage section of road were i)calculation of capacity through material changes at the ditch, enhancement of vertical sections and hydraulic analysis in terms of construction and other aspects, ii)derivation of a combined slope considering a slope and a vertical linearity and maintenance of proper distance between drainage structures in a vertical concave section in terms of geometrical structure, and iii)calculation of the drainage facility installation interval using a minutely rainfall intensity formula and a non-uniform flow analysis technique in terms of hydraulics and hydrologics and prompt removal of rainfalls from the road surface according to a linear drainage method.

Statistical notes for clinical researchers: simple linear regression 2 - evaluation of regression line

  • Kim, Hae-Young
    • Restorative Dentistry and Endodontics
    • /
    • v.43 no.3
    • /
    • pp.34.1-34.5
    • /
    • 2018
  • In the previous section, we established a simple linear regression line by finding the slope and intercept using the least square method as: ${\hat{Y}}=30.79+0.71X$. Finding the regression line was a mathematical procedure. After that we need to evaluate the usefulness or effectiveness of the regression line, whether the regression model helps explain the variability of the dependent variable. Also, statistical inference of the regression line is required to make a conclusion at the population level, because practically, we work with a sample, which is a small part of population. Basic assumption of sampling method is simple random sampling.

Application of time-dependent wave equations to random waves over ripple patch

  • Lee, Chang-Hoon;Suh, Kyung-Doug;Park, Woo-Sun
    • Proceedings of the Korean Society of Coastal and Ocean Engineers Conference
    • /
    • 1996.10a
    • /
    • pp.109-114
    • /
    • 1996
  • In a linear dispersive system, the combined effect of water wave frnnsformations such as refraction, diffraction, shoaling, and reflection can be predicted by the mild-slope equation which was developed by Berkhoff (1972) using the Galerkin-eigenfunction method. In the derivation of the equation, he assumed a mild slope of the bottom $\nabla$h/kh << 1 (where $\nabla$ is the horizontal gradient operator, k is the wavenumber, and h is the water depth) and thus neglected second-order bottom effect terms proportional to O($\nabla$h)$^2$ and O($\nabla$$^2$h). (omitted)

  • PDF

Control of Damping Coefficients for the Shear Mode MR Dampers Using Inverse Model (역모델을 이용한 MR 댐퍼의 감쇠계수 제어)

  • Na, Uhn Joo
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.23 no.5
    • /
    • pp.445-455
    • /
    • 2013
  • A new linearization model for MR dampers is analyzed. The nonlinear hysteretic damping force model of MR damper can be modeled as a hyperbolic tangent function of currents, positions, and velicities, which is an algebraic function with constant parameters. Model parameters can be identified with numerical method using experimental force-velocity-position data obtained from various operating conditions. The nonlinear hysteretic damping force can be linearized with a given slope of damping coefficient if there exist corresponding currents to compensate for the nonlinearity. The corresponding currents can be calculated from the inverse model when the given linear damping force is set equal to the nonlinear hysteretic damping force. The linearization controller is realized in a DSP controller such that the corresponding currents to satisfy a given damping coefficient should be calculated. Experiments show that the current inputs to the MR damper produce linearized damping force with a given slope of the damping coefficient.

The Study about the New Method of Interface Circuit Design for Variable Resistive Sensors (가변형 저항 센서를 위한 새로운 방식의 인터페이스 회로 설계에 관한 연구)

  • 김동용;박지만;차형우;정원섭
    • Proceedings of the IEEK Conference
    • /
    • 1999.06a
    • /
    • pp.749-752
    • /
    • 1999
  • A new interface circuit for variable resistive sensors is proposed. The interface circuit compose of only two strain gages, a voltage-to-current converter, and current mirror with two outputs. A new dual slope A/D converter based on linear operational transconductance amplifier for the testing of prototype interface circuit is also described. The theory of operation is presented and experimental results are used to verify the theoretical predictions. The results show close agreement between predicted behaviour and experimental performance.

  • PDF

Design of Nonlinear(Sigmoid) Activation Function for Digital Neural Network (Digital 신경회로망을 위한 비선형함수의 구현)

  • Kim, Jin-Tae;Chung, Duck-Jin
    • Proceedings of the KIEE Conference
    • /
    • 1993.07a
    • /
    • pp.501-503
    • /
    • 1993
  • A circuit of sigmoid function for neural network is designed by using Piecewise Linear (PWL) method. The slope of sigmoid function can be adjusted to 2 and 0.25. Also the circuit presents both sigmoid function and its differential form. The circuits is simulated by using ViewLogic. Theoretical and simulated performance agree with 1.8 percent.

  • PDF

Long-term Variations of Water Quality Parameters in Lake Kyoungpo (경포호에서 수질변수들의 장기적인 변화)

  • Kwak, Sungjin;Bhattrai, Bal Dev;Choi, Kwansoon;Heo, Woomyung
    • Korean Journal of Ecology and Environment
    • /
    • v.48 no.2
    • /
    • pp.95-107
    • /
    • 2015
  • In order to identify long-term trends of water quality parameters in Lake Kyeongpo, Mann-Kendall test, Sen's slope estimator and linear regression were applied on data, with 15 parameters from three different sites and rainfall, monitored once in every two months from March to November during 1998~2013. Seasonal variation analysis only used Mann-Kendall test and Sen's slope estimator. Analysis result showed that salinity, transparency and nutrient variables (total phosphorus, dissolved inorganic phosphorus, total nitrogen, nitrate nitrogen, ammonia nitrogen) were only parameters having statistically significant trend. In linear regression analysis, salinity (surface and bottom layer of all sites) and transparency (only at site 1), were figured out with statistically significant increasing trend, while in non-parametric statistical method, salinity and transparency in all sites (surface, middle, deep) were figured out with statistically significant increasing trend. Water quality parameters showing statistically significant decreasing trends were dissolved oxygen (surface layer of site 1 and bottom layer of sites 2 and 3), total phosphorus (sites 1 and 2), dissolved inorganic phosphorus, total nitrogen, nitrate nitrogen and ammonia nitrogen in the linear regression analysis and, dissolved oxygen (bottom layer of all sites), total phosphorus, dissolved inorganic phosphorus, total nitrogen, nitrate nitrogen and ammonia nitrogen in the non-parametric method. Seasonal trend analysis result showed that salinity, turbidity, transparency and suspended solids in spring, salinity, transparency, nitrate nitrogen and suspended solids in summer and temperature, salinity, transparency and suspended solids in fall were the variables depending on the season with increasing trends. In general, rainfall during the research period showed decreasing trend. The significant reduction trends of nutrients in Lake Kyeongpo were believed to be related to lagoon restoration and water management project run by Gangneung city and under-water wear removal, but further detailed studies are needed to know the exact causes.

Anti-shock Controller Design for Optical Disk Drive Systems with a Nonlinear Controller (광디스크 드라이브 시스템을 위한 비선형 Anti-shock 제어기 설계)

  • Baek Jong-Shik;Chung Chung Choo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.11 no.9
    • /
    • pp.741-749
    • /
    • 2005
  • This paper presents a nonlinear controller design for optical disk drive systems to improve anti-shock performance. The nonlinear anti-shock controller is added parallel to the original linear servo control loop. In the previous work, a dead-zone nonlinear element is used for the nonlinear controller and a PID control method is used for the linear controller. Although this parallel structure of the controller improves anti-shock performance, it has a narrow stability bound. In this paper, the dead-zone with saturation nonlinear element is proposed for the nonlinear controller. Since this nonlinear element improves stability margin, we can use higher slope gain of dead-zone than that of nonlinear controller using dead-zone only. In the linear controller design, it is shown that the lead-lag control has an improved stability margin over PID control. Numerical simulation results and experimental results show that the proposed method can get better performance to the external shock than previously proposed methods.

A Bayesian Regression Model to Estimate the Deterioration Rate of Track Irregularities (궤도틀림 진전율 추정을 위한 베이지안 회귀분석 모형 연구)

  • Park, Bum Hwan
    • Journal of the Korean Society for Railway
    • /
    • v.19 no.4
    • /
    • pp.547-554
    • /
    • 2016
  • This study considered how to estimate the deterioration rate of the track quality index, which represents track geometric irregularity. Most existing studies have used a simple linear regression and regarded the slope of the regression equation as the progress rate. In this paper, we present a Bayesian approach to estimate the track irregularity progress. This Bayesian approach has many advantages, among which the biggest is that it can formally include the prior distribution of parameters which can be derived from historic data or from expert experiences; then, the rate can be expressed as a probability distribution. We investigated the possibility of applying the Bayesian method to the estimation of the deterioration rate by comparing our bayesian approach to the conventional linear regression approach.