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1 Introduction

In a linear dispersive system, the combined effect of water wave transformations such as refraction,
"diffraction, shoaling, and reflection can be predicted by the mild-slope equation which was developed
by Berkhoff (1972) using the Galerkin-eigenfunction method. In the derivation of the equation, he
assumned a mild slope of the bottom Vh/kh < 1 (where V is the horizontal gradient operator, k is
the wavenumber, and & is the water depth) and thus neglected second-order hottom effect terms
proportional to O(Vh)? and O(V?2h). '

The unsteady time-dependent mild-slope equations (Smith & Sprinks, 1975; Radder & Dinge-
mans, 1985; Kubo et al., 1992; Lee, 1994) were found to properly predict the transformation of
narrow-banded random waves with the wave parameters (w, k, C, Cy, and so on) corresponding to
one carrier frequency (Kirby et al., 1992; Kubo et al., 1992). This approach requires less compu-
tational time for the solution than the method which uses linear superposition of the solutions of
each frequency component.

Recently, by using the Galerkin-eigenfunction method, Massel (1993) and Chamberlain & Porter
(1995) developed wave equations intluding the terms of second-order bottom effect for monochro-
matic waves, and demonstrated the applicability of their equations to rapidly varying bottom to-
pography for which the mild-slope equation could fail to produce adequate approximations. More
recently, by using the Green’s formula method and the Lagrangian formulation, Suh & Lee (1995)
derived two equivalent time-dependent wave equations for the propagation of water waves on rapidly
varying bottom topography. Without the terms of second-order hottom effect, each of the derived
equations reduces to the time-dependent mild-slope equations developed by Smith & Sprinks and
Radder & Dingemans, respectively. A reduced form of the derived equation for a monochromatic
wave is the same as the equations developed by Chamberlain & Porter and Massel.

In the present study, we test numerically the time-dependent equations developed by Suh & Lee
and Radder & Dingemans for the case of unidirectional random waves normally incident on a finite
ripple patch. The numerical solutions are compared against the solution of the Laplace equation
by the finite element method (Park et al., 1992), which may be regarded as an exact solution for
linear random waves. The test conditions are chosen to be the same as Davies & Heathershaw’s
(1984) bed with ten ripples for which a marked discrepancy was observed between the results of
the mild-slope equation and the equation with terms of second-order bottom effect for the case of
a monochromatic wave (Massel, 1993; Chamberlain & Porter, 1995). The schematic diagram of
the numerical test is shown in Fig. 1, in which L, is the wavelength corresponding to the peak
frequency f, of the input frequency spectrum. First, the internal generation of random waves are
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presented. Second, numerical simulations of equations are presented. And finally, conclusions are
presented.

2 Internal generation of random waves

The TMA shallow-water spectrum is used as the input spectrum:
S(f) = ag*(2m)~* [~ exp [=1.25(5/ fp) |yl U112 (5, ) )

In the numerical test, the spectral parameter a = 7.57 x 10~ and the peak enhancement factor
¥ = 2 are used, which gives a broad frequency spectrum. The peak frequency f, is taken to he 0.76
"Hz for which 2k,/K =1 (k, is the wavenumber of water wave corresponding to f, and K = 2r is
the wavenumber of the ripple) and thus significant wave reflection from the ripple patch is expected
in the vicinity of the peak frequency. The input frequency spectrum at both the lower and upper
cutoff frequencies is set to be 10 % of the peak spectrum. In this frequency range, i.e., between
0.59 Hz and 1.63 Hz, 90 % of the total energy of the spectrum is covered and the corresponding
significant wave height is 1.58 cim.

A time-series of normally incident random waves is generated internally inside the model bound-
aries while the waves reflected from the ripple patch are permitted to freely pass across the wave-
maker boundary so that unwanted addition of wave energy inside the model domain can be avoided.
From the viewpoint of energy transport, Lee ( 1996) used this technique successfully for the three
models developed by Copeland (1985), Radder & Dingemans and Kubo et al. The viewpoint of
energy transport suggests the use of the velocity of wave energy as the velocity of the disturbances
caused by the incident wave. In the present problem, the velocity of wave energy is

c,:c‘:_.,g\F Cﬁg((s)z_l) @)

where the overbar is associated with the carrier frequency f. Waves are generated internally
by adding the water surface elevations of incident wave to the computed ones at the wavemaker
boundary. The added water surface elevations for random waves are given by
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Aj is the amplitude of incident wave with the local angular frequency wj, €; is a random phase
independent of the frequency, Az and At are the grid spacing and time step, respectively, and the
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term tanh(f,t) is added for slow start of wave generation. A time-series of free surface elevation
of random waves is generated by the inverse Fourier transform of the TMA spectrum with wave
amplitudes A;. The time step for the inverse Fourier transform is At = T, /41 and the total number
of time step is 16,384 so that the total time for wave generation is 399.61 T},. After 399.61 T}, waves
are generated repeatedly with the time-series {from the start.

3 Numerical simulation

Suh & Lee’s equatjons are given hy
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where ¢ is the velocity potential at mean water level, 5 is the water surface elevation, C and Cy are
the phase speed and group velocity, prespectively, of water waves with carrier angular frequency
w and wavenumber k, and Ry and R, (can be found in Suh & Lee (1995)) are functions of carrier
frequency and water depth. Radder & Dingemans’ equations may be resulted from Egs. (5) and
(6) if terms with (Vh)2 and V2k are neglected.

When the frequency spectrum is relatively broad, if a single carrier frequency is used, the
solution would become inaccurate for the wave components far from the carrier frequency. In order
to obtain better accuracy, the entire frequency range could be divided into several bands and at
each band a solution could be obtained with a representative carrier frequency. In the present
study, three cases with different number of frequency bands, one, two, and three are examined.
The frequency bands are subdivided so that each band contains the same energy, and the carrier
frequencies are selected as the weight-averaged frequencies. If the frequency bands are infinitely
large, the local frequency would be equal to the carrier frequency and the solution would give the
power spectrum of transmitted waves as shown in Fig. 2.

A sponge layer is placed at both upwave and downwave boundaries to minimize wave reflection
from the boundaries by dissipating wave energy inside the sponge layers. The thickness of the
sponge layer, 5, is taken as 2.5 times the longest wavelength of the waves to be modelled. Eq. (5)
is modified to

= —g1 - wnm.rD(;’ (7)

where winax is the maximum angular frequency of the waves to be modelled and the damping
coefficient D increases exponentially from zero at the starting point of the sponge layer to one at
the end.

Egs. (6) and (7) are discretized by a fourth-order Adams-Moulton predictor-corrector method
in time and by a three-point symmetric formula in space. All the values at the initial stage are set
to be zero. At both upwave and downwave boundaries, perfect reflection is assumed. However, the
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effect of the reflection from these boundaries is negligibly small in the region of interest hecause
the sponge layer significantly reduces the incoming waves. The grid spacing Az is chosen so that
the local wave length is greater than 10Az and a spatial resolution is guaranteed. The time
step At = T,/328 is chosen so that the Courant number C, = C.At/Axz is less than 0.1 and a
stable solution is guaranteed. Since the time step of T,/41 is used for wave generation, a linear
interpolation is made to obtain the surface elevations of At = T,,/328 at the wavemaker.

Surface elevations are recorded at a point downwave from the ripple patch to calculate the
spectrum of the waves transmitting over the ripple patch. After generating waves, recording is
made from 507}, to 449.61T}, with the sampling interval of T;,/53 so that the total number of sample
is 16,384. The 16,384 data points were processed in four segments of 4,096 points per segment.
These segments overlap by 50% for smoother and statistically more significant spectral estimates.
The raw spectra are then ensemble-averaged. Further smoothing is made by hand-averaging over
-five neighboring {requency bands.

Fig. 2 shows the comparison of the power spectra of transmitted waves over the ripple patch
for the FEM solution, Suh & Lee’s equation, and mild-slope equation, which are obtained from
the input spectrum and reflection coefficients at each frequency using the condition of wave energy
conservation K2 + K2 = 1 (K, is the reflection coefficient and K; is the transmission coefficient).
For both the FEM solution and Suh & Lee’s equation, the power spectrum of the transmitted
waves shows significant reduction around the peak frequency due to the resonant Bragg reflection
of incident waves. However, the mild-slope equation yields only a slight reduction around the peak
frequency. The significant wave heights of transmitted waves are 1.51 cm (4 % reduction from the
incident wave) for both the FEM solution and Suh & Lee’s equation, and 1.57 cm (1 %) for the
mild-slope equation.

Figs. 3 - 4 show the comparsion of power spectra of the transmitted waves with different number
of frequency bands yielded by the Suh & Lee’s and Radder & Dingemans’ equations, respectively. As
the band number increases, the power spectrumn hecomes closer to that of infinitely large frequency
bands, which proves the better accuracy of the solution with narrower frequency bands. The
significant wave heights yielded by the Suh & Lee’s equation are 1.57 cm (4 % error compared to
the solution, H, = 1.51 cm, with infinitely large frequency bands), 1.52 cm (1 % error), and 1.51
cn (0 % error) for the case of one, two, and three frequency bands, respectively. The significant
wave heights yielded by the Radder & Dingemans’ equation are 1.55 cm (-1 % error compared to
the solution, H, = 1.57 cm, with infintely large frequency bands), 1.57 cm (0 % error), and 1.57
cm (0 % error) for the case of one, two, and three frequency bands, respectively.

4 Conclusions

In order to see how the wave equations with and without terms of second-order bottom effect yield
solutions for random waves on rapidly varying topography, the unsteady time-dependent wave
equations developed by Suh & Lee (1995) and Radder & Dingemans (1985) have been tested for
the Bragg reflection of random waves normally incident on a finite ripple patch. The solutions were
compared to the solution of the Laplace equation by a fininte element method. For Suh & Lee’s
equation, the feature of the Bragg reflection of random waves was found to be very similar to the
solution by the finite element method, that is, the wave components whose frequency is nearly or
exactly resonant with the bottom experience fairly significant reflection by the ripple patch, while
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the reflection is very small for the wave components whose frequency is far out of the resonant
frequency. However, for Radder & Dingemans’ equation, the resonant Bragg reflection around
the peak frquency was found to be meagre. As the number of frequency bands increased and so
the bandwidth becamne narrower, the numerical solution got closer to the solution with infinitely
large frequency bands, which proves that the unsteady time-dependent wave equations yield better
solutions with narrower frequency bands.
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Fig. 1: Schematic diagram for numerical test.
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Fig. 3: Power spectra of transmitted waves with

different number of frequency bands yielded
by Suh & Lee’s eq. ; - - - - = one band;
= two bands, - — - = three bands, —— =
infinitely large bands.
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Fig. 2: Power specrtra of incident and trans-

mitted waves ; - - - - =

incident wave, —

— = transmitted wave for FEM solution,
-~ — = transmitted wave for Suh & Lee’s
eq., ——— = transmitted wave for Radder &
Dingemans’ eq.
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Fig. 4: Power spectra of transmitted waves with
different number of frequency bands yielded
by Radder & Dingemans’ eq. ; - - - - =
one band; ——— = two bands, — -~ — = three

bands,

= infinitely large hands.



