비정상성 빈도해석을 위해 개발된 비정상성 확률분포 모형들은 대부분 매개변수에 시간항을 포함하는 형태로 정의된다. 이 중에서도 우리나라에 널리 사용되고 있는 Gumbel 모형에 대해 살펴보면, 비정상성 Gumbel 모형의 위치 및 규모매개변수는 시간에 대해 선형(linear) 및 지수(exponential) 함수의 관계를 보이는 형태로 가정한다. 규모매개변수의 지수함수의 형태는 음(-)의 값이 추정되는 것을 방지하기 위해 제안되어 널리 사용되고 있으나 이로 인해 확률수문량이 과다산정되는 문제가 발생하기도 한다. 본 연구에서는 이러한 문제를 해결하기 위해 비정상성 Gumbel 모형의 규모매개변수의 다양한 형태를 비교하고자 한다. 이를 위해 비정상성 Gumbel 모형의 규모매개변수를 지수함수, 선형, 로그 형태로 가정하여 비교하였다. 각 모형의 매개변수의 추정은 최우도법을 적용하였고 규모매개변수의 형태별 정확도 비교를 위해 모의실험을 수행하였으며, 실제 자료에 대한 적용으로 자료기간 30년 이상을 보유하면서 경향성을 가지는 강우량 자료들을 대상으로 비정상성 빈도해석을 수행하였다. 그 결과, 지수함수 형태를 가정한 규모매개변수를 가지는 비정상성 Gumbel 모형이 가장 작은 오차를 가지는 것으로 분석되었다.
표본조사에서는 추정의 정확성 및 정밀성 향상을 위해 흔히 층화추출법을 사용하며 층 내에서는 동일한 표본 가중치를 이용하여 표본을 추출한다. 그러나 실제 응답률은 관심변수 값에 영향을 받을 수 있기 때문에 주어진 동일한 가중치는 응답률을 반영하여 보정되어야 한다. 또한 관심변수가 연속형 보조변수와 선형 관계가 있고 보조변수를 기준으로 층이 나누어진 경우에는 층 내에서 동일한 가중치를 사용하는 것 보다 층을 세분화한 후 얻어진 가중치를 사용하는 것이 효과적일 수 있다. 본 연구에서는 응답률이 관심변수 자료 값의 지수함수이고, 관심변수가 보조변수와 선형 관계가 있을 때 정보적 표본설계 기법을 이용하여 추정의 정확성과 정밀성을 높이는 방법을 제안하였다. 또한 모의실험을 통하여 제안된 방법의 우수성을 확인하였다.
목재와 목질재료는 물리적 및 기계적 성질에 큰 변이를 지니므로 표러쉬 문의 표면재을 동일한 재료로 제조하는 경우에도 주위 환경의 변화에 따라 틀어짐이 발생할 수 있다. 틀어짐을 예측하는데 필요한 치수변동계수(LMC)와 탄성계수 등은 ASTM 규정대신에 전건법과 동적 탄성계수로 추정할 수 있었다. 틀어짐과 LMC간 관계는 곡선적이지만, 틀어짐과 탄성계수간에는 선형관계를 나타내었다. 경질섬유판과 합판과 같은 표면재의 재료성질은 정규분포를 나타내었다. 그러나 그 변이는 경질섬유판보다 합판이 훨씬 더 컸다. 확율분포 모수와 틀어짐의 관계를 이용해 몬테카롤로 시뮬레이션을 한 결과 틀어짐의 발생 크기에 따른 프러쉬 문의 불량율을 예측할 수 있었다.
In the present study, a few of recently developed geostatistical models are comparatively studied. The models are two-point statistics based sequential indicator simulation (SISIM) and generalized coupled Markov chain (GCMC), multi-point statistics single normal equation simulation (SNESIM), and object based model of FLUVSIM (fluvial simulation) that predicts structures of target object from the provided geometric information. Out of the models, SNESIM and FLUVSIM require additional information other than conditioning data such as training map and geometry, respectively, which generally claim demanding additional resources. For the comparative studies, three-dimensional fluvial reservoir model is developed considering the genetic information and the samples, as input data for the models, are acquired by mimicking realistic sampling (i.e. random sampling). For SNESIM and FLUVSIM, additional training map and the geometry data are synthesized based on the same information used for the objective model. For the comparisons of the predictabilities of the models, two different measures are employed. In the first measure, the ensemble probability maps of the models are developed from multiple realizations, which are compared in depth to the objective model. In the second measure, the developed realizations are converted to hydrogeologic properties and the groundwater flow simulation results are compared to that of the objective model. From the comparisons, it is found that the predictability of GCMC outperforms the other models in terms of the first measure. On the other hand, in terms of the second measure, the both predictabilities of GCMC and SNESIM are outstanding out of the considered models. The excellences of GCMC model in the comparisons may attribute to the incorporations of directional non-stationarity and the non-linear prediction structure. From the results, it is concluded that the various geostatistical models need to be comprehensively considered and comparatively analyzed for appropriate characterizations.
본 연구는 함초가루를 이용한 설기떡을 개발하기 위하여 재료의 최적 혼합비율을 찾는데 목적이 있다. 설기떡의 품질에 가장 영향을 미치는 수분, 함초가루, 설탕첨가율을 독립 변수로 설정하였고, 예비실험을 거쳐 수분 $13{\sim}18%$, 함초가루 $2{\sim}6%$, 설탕 $8{\sim}13%$의 범위에서 혼합물 실험계획법(mixture design) 중 D-optimal design을 이용하여 최적 재료 혼합비율을 찾고자 하였다. 각 설정된 범위를 입력하였을 때 10개의 실험점이 형성되었고, 4개의 반복점이 선택되어 실험점은 모두 14개가 설정되었다. 각 조건별 실험결과를 모델링화 하여 F-test를 통해 유의성을 검증한 결과 색도의 명도, 적색도, 황색도, 텍스쳐의 검성과 씹힘성, 관능검사 항목인 맛과 부드러운 정도는 linear 모델로 결정되었고, 텍스쳐의 경도, 관능검사의 색, 냄새, 촉촉한 정도, 전반적인 기호도는 quadratic 모델로 결정되었다. 모델의 적합성을 분석한 결과 모든 항목에서 probability가 모두 0.05% 이내에서 유의성을 보여 모델로서 적합함이 인정되었다. 반응표면과 trace plot의 결과 수분과 설탕첨가율이 높을수록, 함초가루 첨가량율이 낮을수록 명도는 높고, 적색도와 황색도는 낮았다. 텍스쳐의 경우 함초 첨가율이 증가할수록 경도, 검성, 씹힘성이 증가하여 함초가루의 첨가율이 높을 경우 설기떡의 부드러움을 저하하는 원인이 되었다. 관능검사 결과에서도 수분, 함초가루, 설탕을 많이 첨가할 경우에는 오히려 낮은 점수를 받았고, 특히 수분과 함초가루에 의하여 많은 영향을 받았다. 함초가루를 첨가한 설기떡의 최적 재료 혼합비율은 수치 최적화에서는 수분 15.2%, 함초가루 3.0%, 설탕 9.8%이었고, 모형적 최적화에서는 desirability가 0.620에 해당하는 수분 15.2%, 함초가루 3.1%, 설탕 9.7%로 수치 최적화점과 유사하게 나타났다.
일반화 LR(Generalized LR, 이하 GLR) 파싱은 선형 스택을 사용하는 전통적인 LR 파싱 방식의 한계를 극복하도록 만들어진 LR 파싱 기법의 하나로서, LR 기법에 여러 가지 매커니즘을 통합하여 자연어 파싱에 응용하는 작업의 토대가 되어 왔다. 본 논문에서는 기존의 확률적 LR 파싱 기법이 가지고 있는 문제를 개선한 조건부 연산 모델(Conditional Action Model)을 제안한다. 기존의 확률적 LR 파싱 기법은 그래프 구조 스택의 복잡성으로 인해 상대적으로 제한된 문맥 정보만을 사용하여 왔다. 제안된 모델은 부분 생성 파스의 표현을 위하여 표층 구문 타입(Surface Phrasal Type)을 사용하여 그래프 구조 스택에 들어 있는 구문 구조를 기술함으로써 좀 더 세분된 구조적 선호도를 파서에 반영시킬 수 있다. 실험 결과, 어휘를 고려하지 않고 학습한 조건부 연산 모델로 구현된 본 GLR 파서는 기존의 방식보다 약 6-7%의 정확도 향상을 보였으며, 본 모델을 통해 풍부한 스택 정보를 확률적 LR 파서의 구조적 중의성 해결에 효과적으로 사용할 수 있음을 보였다.
본 논문에서는 화자 독립 연속 숫자음 인식 시스템의 성능향상을 위하여 MLP-VQ (Multi-Layer Perceptron-Vector Quantizer)를 이용한 가중 DHMM(WDHMM : Weighted Discrete Hidden Markov Models)을 제안한다. MLP 신경망의 출력분포는 입력 패턴과 학습 패턴들간의 비선형 매핑을 통해 각 패턴들간의 유사도를 나타내는 확률분포를 갖는다. 본 논문에서는 MLP 신경망의 출력분포중 가장 높은 출력 값을 갖는 MLP 신경망의 출력 노드를 인덱스를 이용하여 코드워드를 생성하는 MLP-VQ를 제안하였다. 제안된 MLP-VQ는 기존의 VQ에 비해 현재 입력패턴과 학습된 각 class 패턴들간의 유사성 정도를 인식모델을 반영할 수 있는 특징을 갖는다. 또한 MLP 신경망의 출력분포를 DHMM의 심벌 발생 확률의 가중치로 이용하는 가중 DHMM보다는 음소 클래스간의 관계를 인식모델에 반영할 수 있기 때문에 적은 계산양의 증가로 인식기의 성능을 14.71%개선할 수 있었다. 실험결과에 의하면, MLP-VQ와 WDHMM에 의한 화자독립 연결 숫자음 인식율은 84.22%이다.
본 논문에서는 Tobit 모형과 Heckit 모형을 소개한다. 이러한 모형은 절단된 자료의 분석에 사용되는데, 이때 절단된 자료란 연속형 자료가 아닌 특정 지점에서 절단이 발생하게 되거나 일정한 지점에서 개체가 양의 확률로 개체의 다수가 분포, 다른 영역에서는 연속형의 형태로 분포하는 자료를 의미한다. 이때 절단된 형태의 자료라는 특성을 고려하여 일반적인 선형회귀모형을 적합하는 경우 발생하는 문제점을 교정하고자 Tobit 및 Heckit 모형을 사용하나, 두 모형의 차이점이 명확하게 고려되지 않고 종종 혼용된 채 사용되었다. 따라서 여기서는 절단된 자료의 형태를 가정별로 세분화하여 모의자료를 통해 먼저 모형의 적합성을 비교하였으며, 이후 실제 자료를 바탕으로 모형을 적합하였다. 그 결과 절단 여부에 영향을 주는 잠재변수가 없는 경우 Tobit 및 Heckit 모형 모두 잘 적합되나 Tobit 모형이 간소하면서도 참값에 더 근접하게 적합되는 것을 확인하였다. 하지만 절단 여부에 영향을 주는 잠재변수가 존재하는 경우에는 Heckit 모형만 적합이 잘 되는 것을 확인하였다.
Objectives: The purpose of this study is to identify the association between oral health status and pulmonary ventilatory defects. Methods: The 6th (2013-2015) National Health and Nutrition Examination Survey data was used. The study subjects were those aged 40-79 who had pulmonary function examination. Complex samples general linear model analysis, Complex samples cross-tabulation analysis, and Complex samples logistic regression analysis were conducted. Results: In terms of restrictive ventilatory defects, the study subjects (8.3%) who recognized that their oral health status was bad outnumbered those who recognized that their oral health status was good (6.1%) (p<0.05). Many of the study subjects who experienced difficulty in biting, chewing and/or speech, and who had an unhealthy periodontal had restrictive ventilatory defects and obstructive ventilatory defects (p<0.05). The association between oral health status and pulmonary ventilatory defects was analyzed. The findings showed that those who had unhealthy periodontal had a 1.33 times higher probability of pulmonary ventilatory defects than those who had a healthy periodontal (p<0.05). After taking into account general characteristics (age, sex, incomes, education, and smoking) of the subjects, the association between oral health status and pulmonary ventilatory defects was analyzed. The result found that only in cases where one experienced dental caries was an association with pulmonary ventilatory defects found. In other words, those who had dental caries showed a 0.73 times higher probability of pulmonary ventilatory defects than those who had no dental caries (p<0.05). Conclusions: Based on the findings of this research, oral health status was found to be associated with pulmonary ventilatory defects. To improve oral health, it is necessary to provide life-cycle stages based oral health education. Therefore, it is required to develop an oral health education program and develop a national oral health policy.
강우의 공간분포에 대한 신뢰성 있는 추정은 수자원 해석 및 설계에 있어서 필수적인 요소이다. 강우장의 공간변동성에 대한 고해상도 추정은 홍수, 특히 돌발홍수의 원인이 되는 국지성 호우의 확인 및 분석에 있어서 중요하다. 또한 강우의 공간 변동성에 대한 고려는 면적평균강우량 추정의 정확도를 향상시키는데 있어서 중요하며, 강우-유출모델의 모의결과에 대한 신뢰도를 향상시키는데 큰 영향을 미친다. 최근 공간자료에 대한 공간분포예측에 있어서 공간상관성을 고려할 수 있는 공간통계학적 기법의 적용이 증가하고 있으며, 이러한 공간통계학적 기법의 적용에 있어서 신뢰성 있는 모델 매개변수의 추정 및 불확실성 평가는 공간분포 예측결과에 대한 신뢰성을 향상시키는데 중요한 역할을 한다. 외국의 경우 공간분포예측 및 모의, 매개변수의 불확실성 평가 등과 관련하여 활발한 연구가 이루어지고 있는 반면 국내 수자원 분야에서는 아직까지 활발한 연구가 이루어지고 있지 않은 실정이다. 따라서 본 연구에서는 계층구조로 구성된 가우시안 공간선형혼합모델을 적용하여 확률강우량의 공간분포를 추정함에 있어서 모델 매개변수에 대한 추정기법을 비교하였으며, 매개변수 추정기법으로서 경험베리오그램에 대한 곡선적합기법인 보통최소제곱법 및 가중최소제곱법, 우도함수를 기반으로 하는 최우도법 및 REML과 같은 기존의 매개변수 추정기법들과 최근 공간통계학 분야에서 적용이 증가하고 있는 Bayesian 기법을 비교하였다. 이로부터 매개변수 추정기법 간의 매개변수 추정치에 대한 정량적 비교결과를 제시하였으며, Bayesian 기법의 적용을 통해 매개변수에 대한 불확실성 추정결과를 제시하였다. 이러한 결과들은 확률강우량의 공간분포 추정에 있어서 공간예측모델의 매개변수 추정 및 예측에 대한 신뢰성을 향상시킬 수 있는 기초자료로 활용될 수 있을 것이다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.