• 제목/요약/키워드: Linear Observer

검색결과 359건 처리시간 0.03초

Design and Analysis of Dynamic Positioning System Using a Nonlinear Robust Observer

  • Kim, Myung-Hyun
    • International Journal of Ocean Engineering and Technology Speciallssue:Selected Papers
    • /
    • 제5권1호
    • /
    • pp.46-52
    • /
    • 2002
  • A robust nonlinear observer, utilizing the sliding mode concept, is developed for the dynamic positioning of ships. The observer provides the estimates of linear velocities of the ship and bias from slowly varying environmental loads. It also filters out wave frequency motion to avoid wear of actuators and excessive fuel consumption. The main advantage of the proposed observer is in its robustness. Especially, the observer structure with a saturation function makes the proposed observer robust against neglected nonlinearties, disturbances and uncertainties. Since the mathematical model of DP ships is difficult to obtain and includes uncertainties and disturbances, it is very important for the observer to be robust. A nonlinear output feedback controller is derives based on the developed observer using the observer backstepping technique, and the global stability of the observer and control law is shown by Lyapunov stability theory.. A set of simulation was carried out to investigate the performance of the proposed observer for dynamic positioning of ships.

  • PDF

Fault Detection in Linear Descriptor Systems Via Unknown Input PI Observer

  • Hwan Seong kim;Yeu, Tae-Kyeong;Shigeyasy Kawaji
    • Transactions on Control, Automation and Systems Engineering
    • /
    • 제3권2호
    • /
    • pp.77-82
    • /
    • 2001
  • This paper deals with a fault detection algorithm for linear descriptor systems via unknown input PI observer. An unknown input PI observer is presented and its realization conditions is proposed by using the rank condition of system matrices. From the characteristics of unknown input PI observer, the states of system with unknown inputs are estimated and the occurrences of fault are detected, and its magnitudes are estimated easily by using integrated output estimation error under the step faults. Finally, a numerical example is given to verify the effectiveness of the proposed fault detection algorithm.

  • PDF

시간 지연을 갖는 Lipschitz 비선형 시스템의 강인 상태 관측기 (Robust State Observer for Lipschitz Nonlinear Systems with Time Delay)

  • 이성렬
    • 제어로봇시스템학회논문지
    • /
    • 제14권11호
    • /
    • pp.1089-1093
    • /
    • 2008
  • This paper presents a robust state observer design for a class of Lipschitz nonlinear systems with time delay and external disturbance. Sufficient conditions on the existence of the proposed observer are characterized by linear matrix inequalities. It is also shown that the proposed observer design can reduce the effect on the estimation error of external disturbance up to the prescribed level in spite of the existence of time delay. Finally, a numerical example is provided to verify the proposed design method.

Fault Detection in Linear Descriptor Systems Via Unknown Input PI Observer

  • Kim, Hwan-Seong;Yeu, Tae-Kyeong;Kawaji, Shigeyasu
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2000년도 제15차 학술회의논문집
    • /
    • pp.452-452
    • /
    • 2000
  • This paper deals with a fault detection algorithm for linear descriptor systems via unknown input PI observer. An unknown input PI observer is presented and its realization conditions is proposed by using the rank condition of system matrices. From the characteristics of unknown input PI observer, the states of system with unknown inputs are estimated and the magnitude of failures are detected and isolated easily by using integrated output error under the step failures. Finally, a numerical example is given to verify the effectiveness of the proposed algorithm.

  • PDF

출력의 미분항을 사용하지 않는 적응 관측기 설계 방법 (Design of an Adaptive Observer without Using Output Derivative Measurements)

  • 손영익;심형보;백주훈;조남훈
    • 대한전기학회논문지:시스템및제어부문D
    • /
    • 제53권6호
    • /
    • pp.395-401
    • /
    • 2004
  • By using an adaptive algorithm, together with an additional dynamic system, this paper proposes a new approach to design of a state observer for a class of uncertain systems. We enlarge the class of linear systems from the canonical form of [1] by proposing an adaptive observer that allows unknown parameters to affect those unmeasured states. The result is based on a recent result which presents a design algorithm for an additional system to replace output derivative measurements with the additional dynamics. A numerical example illustrates the design procedure of the state observer.

High Performance of Self Scheduled Linear Parameter Varying Control with Flux Observer of Induction Motor

  • Khamari, Dalila;Makouf, Abdesslam;Drid, Said;Chrifi-Alaoui, Larbi
    • Journal of Electrical Engineering and Technology
    • /
    • 제8권5호
    • /
    • pp.1202-1211
    • /
    • 2013
  • This paper deals with a robust controller for an induction motor (IM) which is represented as a linear parameter varying systems. To do so linear matrix inequality (LMI) based approach and robust Lyapunov feedback are associated. This approach is related to the fact that the synthesis of a linear parameter varying (LPV) feedback controller for the inner loop take into account rotor resistance and mechanical speed as varying parameter. An LPV flux observer is also synthesized to estimate rotor flux providing reference to cited above regulator. The induction motor is described as a polytopic LPV system because of speed and rotor resistance affine dependence. Their values can be estimated on line during systems operations. The simulation and experimental results largely confirm the effectiveness of the proposed control.

고이득 외란 관측기에 기반한 입력 제약 조건이 있는 불확실한 선형 시스템의 강인 추종 제어 (Robust Tracking of Constrained Uncertain Linear Systems using a High-gain Disturbance Observer)

  • 윤문채;김정수;백주훈
    • 제어로봇시스템학회논문지
    • /
    • 제22권6호
    • /
    • pp.397-402
    • /
    • 2016
  • This paper proposes a robust tracking control for constrained uncertain linear systems by combining a disturbance observer (DOB) and linear matrix inequality (LMI) based state feedback control. To this end, the state feedback control is designed for the nominal system and then a DOB based feed-forward control is added to reject uncertainties. In doing so, the DOB and state feedback controller are joined in a way that the combined control satisfies the input constraints and closed loop stability is guaranteed. Simulation results are provided to show that the proposed control scheme successfully stabilizes uncertain systems.

미지 입력을 가진 기계 시스템을 위한 비선형 관측기 설계 (Design of a Nonlinear Observer for Mechanical Systems with Unknown Inputs)

  • 송봉섭;이지민
    • 제어로봇시스템학회논문지
    • /
    • 제22권6호
    • /
    • pp.411-416
    • /
    • 2016
  • This paper presents the design methodology of an unknown input observer for Lipschitz nonlinear systems with unknown inputs in the framework of convex optimization. We use an unknown input observer (UIO) to consider both nonlinearity and disturbance. By deriving a sufficient condition for exponential stability in the linear matrix inequality (LMI) form, existence of a stabilizing observer gain matrix of UIO will be assured by checking whether the quadratic stability margin of the error dynamics is greater than the Lipschitz constant or not. If quadratic stability margin is less than a Lipschitz constant, the coordinate transformation may be used to reduce the Lipschitz constant in the new coordinates. Furthermore, to reduce the maximum singular value of the observer gain matrix elements, an object function to minimize it will be optimally designed by modifying its magnitude so that amplification of sensor measurement noise is minimized via multi-objective optimization algorithm. The performance of UIO is compared to a nonlinear observer (Luenberger-like) with an application to a flexible joint robot system considering a change of load and disturbance. Finally, it is validated via simulations that the estimated angular position and velocity provide true values even in the presence of unknown inputs.

Nonlinear Observer flay Applications of Fermentation Process in Stirred Tank Bioreactor

  • Kim, Hak-Kyeong;Nguyen, Tan-Tien;Kim, Sang-Bong
    • Transactions on Control, Automation and Systems Engineering
    • /
    • 제4권3호
    • /
    • pp.244-250
    • /
    • 2002
  • This paper proposed a modified observer based on Busawon's high gain observer using an appropriate time depended function, which can be chosen to make each estimated state converge faster to its real value. The stability of the modified observer is proved by using Lyapunov function. The modified nonlinear observer is applied to estimate the states in stirred tank bioreactor: out-put substrate concentration, output biomass concentration and the specific growth rate of the process. The convergences of the modified observer and Busawon's observer are compared trough simulation results. As the results, the modified observer converges faster to its real value than the well-known Busawon's observer.

Nonlinear Observers for Perspective Time-Varying Linear Systems

  • Itoh, Masahiko
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2002년도 ICCAS
    • /
    • pp.83.5-83
    • /
    • 2002
  • Perspective dynamical systems arise in machine vision, in which only perspective observation is available, and the essential problem is to estimate the state and /or unknown parameters for a moving rigid body based on the observed information. This paper proposes and studies a Luenberger-type observer for perspective tim e-varying linear systems. In particular, assuming a given perspective time-varying linear system to be Lyapunov stable and to satisfy some sort of observability condition, it is shown that the estimation error converges exponentially to zero. Finally, a simple numerical exam pie is presented to illustrate the result obtained.

  • PDF