• 제목/요약/키워드: Linear Motion Accuracy

검색결과 256건 처리시간 0.024초

Design of In-Motion Alignment System of SDINS using Robust EKF

  • Hong, Hyun-Su;Lee, Jang-Gyu;Park, Chan-Gook
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2001년도 ICCAS
    • /
    • pp.177.3-177
    • /
    • 2001
  • In this paper, the design of the in-motion alignment system of Strapdown Inertial Navigation System(SDINS) using Robust Extended Kalman Filter(REKF) is presented. The compensation of errors in the aided navigation system is accomplished by the indirect feedback filtering. The performance of the aided navigation algorithm is very sensitive to the accuracy of the initial estimate, which is the characteristic of the EKF. Unfortunately, the initial attitude error can be very large during the in-motion alignment. To overcome the in-motion alignment under large initial attitude error problem, the REKF using linear robust filtering technique is proposed. The linear robust H$_2$ filter can be adopted for nonlinear ...

  • PDF

An Intelligent Nano-positioning Control System Driven by an Ultrasonic Motor

  • Fan, Kuang-Chao;Lai, Zi-Fa
    • International Journal of Precision Engineering and Manufacturing
    • /
    • 제9권3호
    • /
    • pp.40-45
    • /
    • 2008
  • This paper presents a linear positioning system and its control algorithm design with nano accuracy/resolution. The basic linear stage structure is driven by an ultrasonic motor and its displacement feedback is detected by a LDGI (Laser Diffraction Grating Interferometer), which can achieve nanometer resolution. Due to the friction driving property of the ultrasonic motor, the driving situation differs in various ranges along the travel. Experiments have been carried out in order to observe and realize the phenomena of the three main driving modes: AC mode (for mm motion), Gate mode (for ${\mu}m$ motion), and DC mode (for nm motion). A proposed FCMAC (Fuzzy Cerebella Model Articulation Controller) control algorithm is implemented for manipulating and predicting the velocity variation during the motion of each mode respectively. The PCbased integral positioning system is built up with a NI DAQ Device by a BCB (Borland $C^{++}$ Builder) program to accomplish the purpose of an intelligent nanopositioning control.

리니어모터 스테이지 진직도 보상 제어

  • 강민식;최정덕
    • 한국반도체및디스플레이장비학회:학술대회논문집
    • /
    • 한국반도체및디스플레이장비학회 2007년도 춘계학술대회
    • /
    • pp.11-14
    • /
    • 2007
  • An additive servo-system is developed to improve straightness of linear motor stages. For linear motor stages used in the field of high-precision linear motion process, high straightness accuracy is necessary as well as positioning accuracy in the longitudinal axis. In such cases, machining and assembling cost increases to improve the straightness accuracy. An electro-magnetic actuator which is relatively cost effective than any other conventional servo-systems is suggested to compensate the fixed straightness error. To overcome the compensation error due to modeling error and friction disturbance, a sliding mode control is addressed. The effectiveness of the suggested mechanism and the control are illustrated along with some experimental results.

  • PDF

수정된 등가선형해석기법의 정확성 평가 (Evaluation of Accuracy of Modified Equivalent Linear Method)

  • 정창균;곽동엽;박두희;김광균
    • 한국지반환경공학회 논문집
    • /
    • 제11권6호
    • /
    • pp.5-20
    • /
    • 2010
  • 1차원 등가선형 지반응답해석은 지반에 의한 지진동의 증폭현상을 모사하는데 널리 사용되고 있다. 등가선형해석은 적은 수의 입력변수를 필요로하므로 사용하기 편리하며 해석 소요시간이 짧다는 장점을 가지고 있는 반면, 시간에 따라서 변화하는 지반의 비선형 거동을 모사할 수 없으며 일정한 전단탄성계수와 감쇠비를 해석 내내 적용하는 선형해석이라는 단점을 가지고 있다. 이와 같은 등가선형해석의 단점을 보완하기 위하여 진동 주파수와 변형률과의 관계를 모사하는 다양한 형태의 수정된 등가선형해석기법들이 개발되었다. 수정된 기법들은 전단변형률 푸리에 스펙트럼을 사용한다는 점에서는 동일하지만, 이로부터 변형률의 주파수 의존도를 정의하는 과정에서는 차이를 보이고 있다. 본 연구에서는 두 가지 수정된 등가선형해석기법들의 정확성을 평가하기 위하여 국내에서 조사된 두 개의 토층에서 일련의 비선형, 등가선형, 수정된 등가선형 지반응답해석을 수행하였다. 해석 결과, 수정된 등가선형해석기법들은 고주파수 요소를 과대 예측할 수 있으며, 특히 고주파수 요소가 풍부한 인공지진파를 입력 지진파로 사용하였을 경우 비현실적인 응답이 계산될 수 있는 것으로 나타났다.

Applied 2D equivalent linear program to analyze seismic ground motion: Real case study and parametric investigations

  • Soltani, Navid;Bagheripour, Mohammad Hossein
    • Geomechanics and Engineering
    • /
    • 제30권1호
    • /
    • pp.1-10
    • /
    • 2022
  • Seismic ground response evaluation is one of the main issues in geotechnical earthquake engineering. These analyses are subsequently divided into one-, two- and three-dimensional methods, and each of which can perform in time or frequency domain. In this study, a novel approach is proposed to assess the seismic site response using two-dimensional transfer functions in frequency domain analysis. Using the proposed formulation, a program is written in MATLAB environment and then promoted utilizing the equivalent linear approach. The accuracy of the written program is evaluated by comparing the obtained results with those of actual recorded data in the Gilroy region during Loma Prieta (1989) and Coyote Lake (1979) earthquakes. In order to precise comparison, acceleration time histories, Fourier amplitude spectra and acceleration response spectra diagrams of calculated and recorded data are presented. The proposed 2D transfer function diagrams are also obtained using mentioned earthquakes which show the amount of amplification or attenuation of the input motion at different frequencies while passing through the soil layer. The results of the proposed method confirm its accuracy and efficiency to evaluate ground motion during earthquakes using two-dimensional model. Then, studies on irregular topographies are carried out, and diagrams of amplification factors are shown.

Improvement of Tracking Accuracy of Positioning Systems with Iron Core Linear DC Motors

  • Song, Chang-Kyu;Kim, Gyung-Ho
    • International Journal of Precision Engineering and Manufacturing
    • /
    • 제6권1호
    • /
    • pp.31-35
    • /
    • 2005
  • Higher productivity requires high-speed motion of machine tool axes. The iron core linear DC motor (LDM) is widely accepted as a viable candidate for high-speed machine tool feed unit. LDM, however, has two inherent disturbance force components, namely cogging and thrust force ripple. These disturbance forces directly affect the tracking accuracy of the feeding system and must be eliminated or reduced. In order to reduce motor ripple, this research adapted the feedforward compensation method and neural network control. Experiments carried out with the linear motor test setup show that these control methods are effective in reducing motor ripple.

유한요소해석 및 다구찌법을 이용한 형상인발제품 치수정도 및 진직도 향상을 위한 다이스각 최적화 (Optimization of Dies Angles to Improve the Dimensional Accuracy and Straightness of the Shaped Drawn Product based on the FE Simulation and the Taguchi Method)

  • 이상곤;이재은;김병민
    • 대한기계학회논문집A
    • /
    • 제32권6호
    • /
    • pp.474-480
    • /
    • 2008
  • Recently, rods having irregular sections more complex than a rectangle or ellipse are necessary to produce mechanical parts. The cold shaped drawing process is used to obtain shaped drawn products with high levels of dimensional accuracy and quality. A cross roller guide, considered in this study, is one of the parts produced by shaped drawing process. A cross roller guide has a linear bearing system that rolls along a guide way. A cross roller guide is one of the most important components in terms of equipment because the quality of the product influences the precision linear motion. Therefore, the final dimensional accuracy of the linear rail in the shaped drawing is very important. The objective of this study is to find the optimized die angles to improve the dimensional accuracy and straightness of the final shaped drawn product. In order to achieve the aim of this study, design of experiment, FE-simulation, and the Taguchi method were used. Based on the analytical results, shaped drawing experiment has been performed to verify the result.

차량 플랫폼에 최적화한 자차량 에고 모션 추정에 관한 연구 (A Study on Vehicle Ego-motion Estimation by Optimizing a Vehicle Platform)

  • 송문형;신동호
    • 제어로봇시스템학회논문지
    • /
    • 제21권9호
    • /
    • pp.818-826
    • /
    • 2015
  • This paper presents a novel methodology for estimating vehicle ego-motion, i.e. tri-axis linear velocities and angular velocities by using stereo vision sensor and 2G1Y sensor (longitudinal acceleration, lateral acceleration, and yaw rate). The estimated ego-motion information can be utilized to predict future ego-path and improve the accuracy of 3D coordinate of obstacle by compensating for disturbance from vehicle movement representatively for collision avoidance system. For the purpose of incorporating vehicle dynamic characteristics into ego-motion estimation, the state evolution model of Kalman filter has been augmented with lateral vehicle dynamics and the vanishing point estimation has been also taken into account because the optical flow radiates from a vanishing point which might be varied due to vehicle pitch motion. Experimental results based on real-world data have shown the effectiveness of the proposed methodology in view of accuracy.

Fault diagnosis of linear transfer robot using XAI

  • Taekyung Kim;Arum Park
    • International Journal of Internet, Broadcasting and Communication
    • /
    • 제16권3호
    • /
    • pp.121-138
    • /
    • 2024
  • Artificial intelligence is crucial to manufacturing productivity. Understanding the difficulties in producing disruptions, especially in linear feed robot systems, is essential for efficient operations. These mechanical tools, essential for linear movements within systems, are prone to damage and degradation, especially in the LM guide, due to repetitive motions. We examine how explainable artificial intelligence (XAI) may diagnose wafer linear robot linear rail clearance and ball screw clearance anomalies. XAI helps diagnose problems and explain anomalies, enriching management and operational strategies. By interpreting the reasons for anomaly detection through visualizations such as Class Activation Maps (CAMs) using technologies like Grad-CAM, FG-CAM, and FFT-CAM, and comparing 1D-CNN with 2D-CNN, we illustrates the potential of XAI in enhancing diagnostic accuracy. The use of datasets from accelerometer and torque sensors in our experiments validates the high accuracy of the proposed method in binary and ternary classifications. This study exemplifies how XAI can elucidate deep learning models trained on industrial signals, offering a practical approach to understanding and applying AI in maintaining the integrity of critical components such as LM guides in linear feed robots.

New Algorithm for Recursive Estimation in Linear Discrete-Time Systems with Unknown Parameters

  • Shin Vladimir;Ahn Jun-Il;Kim Du-Yong
    • International Journal of Control, Automation, and Systems
    • /
    • 제4권4호
    • /
    • pp.456-465
    • /
    • 2006
  • The problem of recursive filtering far linear discrete-time systems with uncertainties is considered. A new suboptimal filtering algorithm is herein proposed. It is based on the fusion formula, which represents an optimal mean-square linear combination of local Kalman estimates with weights depending on cross-covariances between local filtering errors. In contrast to the optimal weights, the suboptimal weights do not depend on current measurements, and thus the proposed algorithm can easily be implemented in real-time. High accuracy and efficiency of the suboptimal filtering algorithm are demonstrated on the following examples: damper harmonic oscillator motion and vehicle motion constrained to a plane.