• Title/Summary/Keyword: Linear Interpolation

Search Result 598, Processing Time 0.026 seconds

Extraction of Three-dimensional Hybrid City Model based on Airborne LiDAR and GIS Data for Transportation Noise Mapping (교통소음지도 작성을 위한 3차원 도시모델 구축 : 항공 LiDAR와 GIS DB의 혼용 기반)

  • Park, Taeho;Chun, Bumseok;Chang, Seo Il
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.24 no.12
    • /
    • pp.985-991
    • /
    • 2014
  • The combined method utilizing airborne LiDAR and GIS data is suggested to extract 3-dimensional hybrid city model including roads and buildings. Combining the two types of data is more efficient to estimate the elevations of various types of roads and buildings than using either LiDAR or GIS data only. This method is particularly useful to model the overlapped roads around the so called spaghetti junction. The preliminary model is constructed from the LiDAR data, which can give wrong information around the overlapped parts. And then, the erratic vertex points are detected by imposing maximum vertical grade allowable on the elevated roads. For the purpose of efficiency, the erratic vertex points are corrected through linear interpolation method. To avoid the erratic treatment of the LiDAR data on the facades of buildings 2 meter inner-buffer zone is proposed to efficiently estimate the height of a building. It is validated by the mean value(=5.26 %) of differences between estimated elevations on 2 m inner buffer zone and randomly observed building elevations.

Spectral Analysis of Heart Rate Variability in ECG and Pulse-wave using autoregressive model (AR모델을 이용한 심전도와 맥파의 심박변동 스펙트럼 해석)

  • Kim NagHwan;Lee EunSil;Min HongKi;Lee EungHyuk;Hong SeungHong
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.1 no.1
    • /
    • pp.15-22
    • /
    • 2000
  • The analysis of power spectrum based on linear AR model is applied widely to quantize the response of autonomic nerve noninvasively, In this paper, we estimate the power spectrum density for heartrate variability of the electrocadiogram and pulse wave for short term data(less than two minute), The time series of heart rate variability is obtained from the time interval(RRI, PPI) between the feature point of the electrocadiogram and pulse wave for normal person, The generated time series reconstructed into new time series through polynomial interpolation to apply to the AR mode. The power spectrum density for AR model is calculated by Burg algorithm, After applying AR model, the power spectrum density for heart rate variability of the electrocadiogram and the pulse wave is shown smooth spectrum power at the region of low frequence and high frequence, and that the power spectrum density of electrocadiogram and pulse wave has similar form for same subject.

  • PDF

Studies on Probabilistic Nonlinear First Ply Failure Loads and Buckling Loads of Laminated Composite Panels (적층복합재료 패널의 확률론적 비선형 초기파단하중 및 좌굴하중에 관한 연구)

  • Bang, Je-Sung
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.17 no.6
    • /
    • pp.1-10
    • /
    • 2013
  • Probabilistic nonlinear first ply failure loads of flat composite panels and nonlinear buckling loads of curved composite panels with cutouts are estimated to provide the more reliable main load carrying structure in the renewable energy industry and offshore structures. The response surface method approximates limit state surface to a second order polynomial form of random variables with the results of deterministic finite element analyses at given sampling design points. Furthermore, the iterative linear interpolation scheme is used to obtain a more accurate approximation of the limit state surface near the most probable failure point (MPFP). The advanced first order second moment method and the Monte Carlo method are performed on an approximated limit state surface to evaluate the probability of failure. Finally, the sensitivity of the reliability index with respect to transformed random variables is investigated to figure out the main random variables that have an effect on failures.

Design Philosophy of MIMO OFDM system for Underwater Communication (수중 통신 환경을 위한 MIMO-OFDM 시스템 설계)

  • Han, Dong-Keol;Hui, Bing;Chang, Kyung-Hi;Byun, Sung-Hun;Kim, Sea-Moon;Lim, Yong-Kon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.15 no.1
    • /
    • pp.22-32
    • /
    • 2011
  • In this paper, we first analyze the differences of underwater acoustic (UWA) orthogonal frequency division multiplexing (OFDM) systems and conventional terrestrial OFDM system, and give a simple introduction of the backgrounds. By considering the real UWA channel environments, the measured channel data is used to generate the UWA channel model and calculate the relative parameters for underwater OFDM systems. Practical least square (LS) based channel estimation with linear interpolation are adopted to obtain the channel state information (CSI) at receiver side. As multi-input multi-output (MIMO) processing techniques, Alamouti code is implemented and evaluated to perform for space time block coding (STBC) and space frequency block coding (SFBC) for UWA OFDM systems with the MIMO configuration of $2{\times}1$, at the same time, $1{\times}2$ maximum ratio combining (MRC) is performed for the purpose of comparison. The simulation results show that, with perfect channel estimation, SFBC failed to work duo to the serious frequency selectivity of UWA channel environments. When the practical channel estimation is applied, in the case of STBC, the proposed 4-column pilot pattern gives better performance about 7dB than SISO system.

Realization of 3D Virtual Face Using two Sheets of 2D photographs (두 장의 2D 사진을 이용한 3D 가상 얼굴의 구현)

  • 임낙현;서경호;김태효
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.2 no.4
    • /
    • pp.16-21
    • /
    • 2001
  • In this paper a virtual form of 3 dimensional face is synthesized from the two sheets of 2 dimensional photographs In this case two sheets of 2D face photographs, the front and the side photographs are used First of all a standard model for a general face is created and from this model the feature points which represents a construction of face are densely defined on part of ears. eyes, a nose and a lip but the other parts. for example, forehead, chin and hair are roughly determined because of flat region or the less individual points. Thereafter the side photograph is connected symmetrically on the left and right sides of the front image and it is gradually synthesized by use of affine transformation method. In order to remove the difference of color and brightness from the junction part, a linear interpolation method is used. As a result it is confirmed that the proposed model which general model of a face can be obtain the 3D virtual image of the individual face.

  • PDF

A Study on Extraction of Vocal Tract Characteristic After Canceling the Vocal Cord Property Using the Line Spectrum Pairs (선형 스펙트럼쌍을 이용한 성문특성이 제거된 성도특성 추출법에 관한 연구)

  • 민소연;장경아;배명진
    • The Journal of the Acoustical Society of Korea
    • /
    • v.21 no.7
    • /
    • pp.665-670
    • /
    • 2002
  • The most common form of pre-emphasis is y(n)=s(n)-As(n-1), where A typically lies between 0.9 and 1.0 in voiced signal. Also, this value reflects the degree of pre-emphasis and equals R(1)/R(0) in conventional method. This paper proposes a new flattening method to compensate the weaked high frequency components that occur by vocal cord characteristic. We used interval information of LSP to estimate formant frequency, After obtaining the value of slope and inverse slope using linear interpolation among formant frequency, flattening process is followed. Experimental results show that the proposed method flattened the weaked high frequency components effectively. That is, we could improve the flattening characteristics by using interval information of LSP as flattening factor at the process that compensates weaked high frequency components.

Shape Design Sensitivity Analysis using Isogeometric Approach (CAD 형상을 활용한 설계 민감도 해석)

  • Ha, Seung-Hyun;Cho, Seon-Ho
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2007.04a
    • /
    • pp.577-582
    • /
    • 2007
  • A variational formulation for plane elasticity problems is derived based on an isogeometric approach. The isogeometric analysis is an emerging methodology such that the basis functions in analysis domain arc generated directly from NURBS (Non-Uniform Rational B-Splines) geometry. Thus. the solution space can be represented in terms of the same functions to represent the geometry. The coefficients of basis functions or the control variables play the role of degrees-of-freedom. Furthermore, due to h-. p-, and k-refinement schemes, the high order geometric features can be described exactly and easily without tedious re-meshing process. The isogeometric sensitivity analysis method enables us to analyze arbitrarily shaped structures without re-meshing. Also, it provides a precise construction method of finite element model to exactly represent geometry using B-spline base functions in CAD geometric modeling. To obtain precise shape sensitivity, the normal and curvature of boundary should be taken into account in the shape sensitivity expressions. However, in conventional finite element methods, the normal information is inaccurate and the curvature is generally missing due to the use of linear interpolation functions. A continuum-based adjoint sensitivity analysis method using the isogeometric approach is derived for the plane elasticity problems. The conventional shape optimization using the finite element method has some difficulties in the parameterization of boundary. In isogeometric analysis, however, the geometric properties arc already embedded in the B-spline shape functions and control points. The perturbation of control points in isogeometric analysis automatically results in shape changes. Using the conventional finite clement method, the inter-element continuity of the design space is not guaranteed so that the normal vector and curvature arc not accurate enough. On tile other hand, in isogeometric analysis, these values arc continuous over the whole design space so that accurate shape sensitivity can be obtained. Through numerical examples, the developed isogeometric sensitivity analysis method is verified to show excellent agreement with finite difference sensitivity.

  • PDF

The Phase Space Analysis of 3D Vector Fields (3차원 벡터 필드의 위상 공간 분석)

  • Jung, Il-Hong;Kim, Yong Soo
    • Journal of Digital Contents Society
    • /
    • v.16 no.6
    • /
    • pp.909-916
    • /
    • 2015
  • This paper presents a method to display the 3D vector fields by analyzing phase space. This method is based on the connections between ordinary differential equations and the topology of vector fields. The phase space analysis should be geometric interpolation of an autonomous system of equation in the form of the phase space. Every solution of it system of equations corresponds not to a curve in a space, but the motion of a point along the curve. This analysis is the basis of this paper. This new method is required to decompose the hexahedral cell into five or six tetrahedral cells for 3D vector fields. The critical points can be easily found by solving a simple linear system for each tetrahedron. The tangent curves can be integrated by finding the intersection points of an integral curve traced out by the general solution of each tetrahedron and plane containing a face of the tetrahedron.

Scenario-based 3D Objects Reuse Algorithm Scheme (시나리오 기반의 3D 객체 재사용 알고리즘)

  • Kang, Mi-Young;Lee, Hyung-Ok;Son, Seung-Chul;Heo, Kwon;Kim, Bong-Tae;Nam, Ji-Seung
    • The Journal of the Korea Contents Association
    • /
    • v.6 no.11
    • /
    • pp.302-309
    • /
    • 2006
  • This paper propose a practical algorithm to reuse and expand the objects. This algorithm is based on the Motion Path Modification rules. We focus on reusing of the existing motions for synthesizing new motions for the objects. Both the linear and the nonlinear curve-fitting algorithm are applied to modify an animation by keyframe interpolation and to make the motion appear realistic. We also proposes a framework of the scenario-based 3D image synthesizing system that allows common users, who envision a scenario in their minds, to realize it into segments of a cool animation. The framework is useful in building a 3D animation in game programming with a limited set of 3D objects.

  • PDF

A Nonuniform Sampling Technique and Its Application to Speech Coding (비균등 표본화 기법과 음성 부호화로의 응용)

  • Iem, Byeong-Gwan
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.24 no.1
    • /
    • pp.28-32
    • /
    • 2014
  • For a signal such as speech showing piece-wise linear shape in a very short time period, a nonuniform sampling method based on the inflection point detection (IPD) is proposed to reduce data rate. The method exploits the geometrical characteristics of signal further than the existing local maxima/minima detection (MMD) based sampling method. As results, the reconstructed signal by the interpolation of the IPD based sampled data resembles the original speech more. Computer simulation shows that the proposed IPD based method produces about 9~23 dB improvement over the existing MMD method. To show the usefulness of the IPD technique, it is applied to speech coding, and compared to the continuously variable slope delta modulation (CVSD). The nonuniformly sampled data is binary coded with one bit flag set "1". Noninflection samples are not sent, but only flag bits set 0 are sent. The method shows 0.3 ~ 9 dB SNR and 0.5 ~ 1.3 mean opinion score (MOS) improvements over the CVSD.