• Title/Summary/Keyword: Linear Impulse

Search Result 194, Processing Time 0.026 seconds

Progressive Filter for Impulse Noise Reduction (임펄스 잡음제거를 위한 프로그레시브 필터)

  • Kim, Young-Ro;Dong, Sung-Soo
    • 전자공학회논문지 IE
    • /
    • v.49 no.1
    • /
    • pp.24-29
    • /
    • 2012
  • In this paper, we propose a progressive filter for impulse noise reduction. The proposed method uses non-linear filter and linear filter progressively. Non-linear filter reduces abrupt noise pattern. Also, linear filter adjusts filtering direction according to an edge in the image which is filtered by non-linear filter. Thus, our proposed method not only preserves edge, but also reduces noise in uniform region. Experimental results show that our proposed method has better quality than those by existing non-linear and linear progressive filtering methods.

Analysis of Runoff Characteristics Using Multiple Impulse Response Functions (복수의 충격응답함수를 이용한 유역의 유출특성 분석)

  • Yoo, Chul-Sang;Kim, Ha-Young;Park, Joo-Young
    • Journal of Korea Water Resources Association
    • /
    • v.43 no.6
    • /
    • pp.571-581
    • /
    • 2010
  • This study analyzed rainfall-runoff characteristics by deriving multiple impulse responses. The concept of competing impulse responses was used for deriving multiple impulse responses. Based on this concept, each response function derived competes to be selected for simulating the runoff measured. This concept of competing linear impulse responses was applied to four basins, Jeongseon, Yeongwol, Youngchoon and Chungju Dam. One to three impulse responses have been derived and compared each other considering basin characteristics. First, in case of deriving one linear impulse response, the peak flow of the impulse response was found to be increased according to their study basins area. In case of deriving two linear impulse response, the peak flow of the first impulse response and the duration of the second impulse response were increased according to their basin size. The case of deriving three impulse response showed similar characteristics of deriving two impulse responses. However, the peak flow of third impulse response was very small and lasted quite long time. Summarizing these results considering the basin characteristics, the first impulse response seems to be related with the surface runoff, the second impulse with the surface runoff and interflow, and the third impulse response with the interflow and base flow.

Correlation between the linear impulse and ball spin rate (선 충격 량과 공의 회전 속도와의 상관관계)

  • Roh, Woo-Jin;Lee, Chong-Won
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.870-874
    • /
    • 2007
  • Golf ball spin rate after impact with club is created by the contact force, which is greatly influenced by ball and club mass, material, impact speed, and club loft angle. Previous studies showed that the contact force is determined as the resultant force of the reaction forces normal and tangential to the club face at the contact point. The normal force causes the compression and restitution of the ball, and the tangential force creates the spin. Especially, the tangential force takes either positive or negative values as the ball rolls and slides along the club face during impact. Although the positive and negative tangential forces are known to create and reduce the back spin rate, respectively, the mechanism of ball spin creation has not yet been discussed in detail. It is shown in this work that the linear impulse of the tangential force is directly related to generation of back spin rate of golf ball. The linear impulse can be calculated from the tangential force, which depends upon many factors such as ball and club mass, material, impact speed, and club loft angle. In this research, the influence of the contact force between golf club and ball is investigated to analyze the mechanism of impact. For this purpose, the contact force and the contact time at impact between golf club head and ball are computed using FEM.

  • PDF

Correlation between the Linear Impulse and Ball Spin Rate (선 충격량과 공의 회전 속도와의 상관관계)

  • Roh, Woo-Jin;Lee, Chong-Won
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.17 no.11
    • /
    • pp.1127-1132
    • /
    • 2007
  • Golf ball spin rate after impact with club is created by the contact force, which is greatly influenced by ball and club mass, material, impact speed, and club loft angle. Previous studies showed that the contact force is determined as the resultant force of the reaction forces normal and tangential to the club face at the contact point. The normal force causes the compression and restitution of the ball, and the tangential force creates the spin. Especially, the tangential force takes either positive or negative values as the ball rolls and slides along the club face during impact. Although the positive and negative tangential forces are known to create and reduce the back spin rate, respectively, the mechanism of ball spin creation has not yet been discussed in detail. It is shown in this work that the linear impulse of the tangential force is directly related to generation of back spin rate of golf ball. The linear impulse can be calculated from the tangential force, which depends upon many factors such as ball and club mass, material, impact speed, and club loft angle. In this research, the influence of the contact force between golf club and ball is investigated to analyze the mechanism of impact. For this purpose, the contact force and the contact time at impact between golf club head and ball are computed using FEM.

Discrete-time BLUFIR filter (이산시간 무편향 선형 최적 유한구간 필터)

  • 박상환;권욱현;권오규
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.980-983
    • /
    • 1996
  • A new version of the discrete-time optimal FIR (finite impulse response) filter utilizing only the measurements of finite sliding estimation window is suggested for linear time-invariant state-space models. This filter is called the BLUFIR (best linear unbiased finite impulse response) filter since it provides the BLUE (best linear unbiased estimate) of the state obtained from the measurements of the estimation window. It is shown that the BLUFIR filter has the deadbeat property when there are no noises in the estimation window.

  • PDF

Rainfall-Runoff Analysis Utilizing Multiple Impulse Responses (복수의 임펄스 응답을 이용한 강우-유출 해석)

  • Yoo, Chul-Sang;Park, Joo-Young
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.16 no.5
    • /
    • pp.537-543
    • /
    • 2006
  • There have been many recent studies on the nonlinear rainfall-runoff modeling, where the use of neural networks is shown to be quite successful. Due to fundamental limitation of linear structures, employing linear models has often been considered inferior to the neural network approaches in this area. However, we believe that with an appropriate extension, the concept of linear impulse responses can be a viable tool since it enables us to understand underlying dynamics principles better. In this paper, we propose the use of multiple impulse responses for the problem of rainfall-runoff analysis. The proposed method is based on a simple and fixed strategy for switching among multiple linear impulse-response models, each of which satisfies the constraints of non-negativity and uni-modality. The computational analysis performed for a certain Korean hydrometeorologic data set showed that the proposed method can yield very meaningful results.

Properties of a Generalized Impulse Response Gramian with Application to Model Reduction

  • Choo, Younseok;Choi, Jaeho
    • International Journal of Control, Automation, and Systems
    • /
    • v.2 no.4
    • /
    • pp.516-522
    • /
    • 2004
  • In this paper we investigate the properties of a generalized impulse response Gramian. The recursive relationship satisfied by the family of Gramians is established. It is shown that the generalized impulse response Gramian contains information on the characteristic polynomial of a linear time-invariant continuous system. The results are applied to model reduction problem.

The influence of load pulse shape on pressure-impulse diagrams of one-way RC slabs

  • Wang, Wei;Zhang, Duo;Lu, Fangyun
    • Structural Engineering and Mechanics
    • /
    • v.42 no.3
    • /
    • pp.363-381
    • /
    • 2012
  • This study is aimed at providing an efficient analytical model to obtain pressure- impulse diagram of one-way reinforced concrete slabs subjected to different shapes of air blast loading using single degree of freedom method (SDOF). A tri-linear elastic perfectly plastic SDOF model has been used to obtain the pressure-impulse diagram to correlate the blast pressure and the corresponding concrete flexural damage. In order to capture the response history for the slab, a new approximately SDOF method based on the conventional SDOF method is proposed and validated using published test data. The influences of pulse loading shape on the pressure-impulse diagram are studied. Based on the results, a pressure-impulse diagram generation method using SDOF and an analytical equation for the pressure-impulse diagram is proposed to different damage levels and different blast loading shapes.

Sweet Spot Analysis of Linear Array System with a Large Number of Loudspeakers by Geometrical Approach Method (다수의 스피커를 사용하는 선형 배열 시스템에서 기하학적 접근 방법을 통한 스윗 스팟 분석)

  • Yang, Hunmin;Park, Youngjin;Park, Youn-Sik
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.23 no.11
    • /
    • pp.951-956
    • /
    • 2013
  • This paper describes techniques used to analyze the sweet spot of sound field reproduced by ear-level linear arrays of loudspeakers by geometrical approach method. Previous researches have introduced various sweet spot definitions in their own way. In general, sweet spot is defined as an area whose stereophonic sound effect is valid. Its size is affected by the geometrical arrangement of the system. In this paper, a case when plane waves are generated by linear arrays of loudspeakers in the horizontal plane is considered. So the sweet spot is defined as an area in which the listener can perceive the desired azimuth angle. Because there are many loudspeakers, impulse responses at listener's ears are in the form of pulse-train and the time-duration of the pulse-train affects the localization performance of the listener. So we calculated the maximum time duration of pulse-train by geometrical approach method and identified with the results of impulse response simulation. This paper also includes parameter analysis with respect to aperture size, so it suggests a tool for sound engineers to expect the sweet spot size and listener's sound perception.

Robust FIR filter for Linear Discrete-time System

  • Quan, Zhong-Hua;Han, Soo-Hee;Kwon, Wook-Hyun
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.2548-2551
    • /
    • 2005
  • In this paper, a robust receding horizon finite impulse response(FIR) filter is proposed for a class of linear discrete time systems with uncertainty satisfying an integral quadratic constraint. The robust state estimation problem involves constructing the set of all possible states at the current time consistent with given system input, output measurements and the integral quadratic constraint.

  • PDF