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Properties of a Generalized Impulse Response Gramian
with Application to Model Reduction

Younseok Choo and Jaeho Choi

Abstract: In this paper we investigate the properties of a generalized impulse response
Gramian. The recursive relationship satisfied by the family of Gramians is established. It is
shown that the generalized impulse response Gramian contains information on the
characteristic polynomial of a linear time-invariant continuous system. The results are applied

to model reduction problem.
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1. INTRODUCTION

In identification or model reduction problems, an
important task is the computation of the characteristic
polynomial of the original or reduced-order system.
Several literature have shown that the characteristic
polynomial of a system can be extracted from the
information generated by the impulse response data.
For continuous systems, the Gram matrix [1,2] and
the impulse response Gramian [3] are good examples
of information from which the characteristic
polynomial of a system can be obtained. For discrete
systems, the Hankel matrix [4] and the impulse
response Gramian [5] possess the same properties.
Recently a new impulse response Gramian was
introduced in [6] that can also be utilized to compute
the characteristic polynomial of a discrete system. In
addition to computing the characteristic polynomial,
those impulse response data are useful for the order
reduction of linear time-invariant systems [6-10].

In this paper we investigate the properties of a
generalized impulse response Gramian [11], which
includes the Gram matrix of [1,2] and the impulse
response Gramian in [3] as special cases. The
recursive relationship satisfied by the family of
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Gramians is established. It is also shown that the
generalized impulse response Gramian contains
information on the characteristic polynomial of a
linear time-invariant continuous system. The results
are applied to model reduction problem.

This paper is organized as follows. In Section 2,
some preliminaries are presented. The properties of a
generalized impulse response Gramian are studied in
Section 3. An application to a model reduction
problem is considered in Section 4 and the paper is
concluded in Section 5.

2. PRELIMINARIES
2.1. Canonical realizations

Consider a stable nth-order linear time-invariant
system described by the transfer function

Bs" V4 bys" 4w b, s+b,

H(s)=2" 1220 M
s'+as"T 4 +a, s+a,
or by the minimal state-space realization
x(¢) = Ax() + br(t), 2
y(t) = cx(2), 3)

where x(¢) e R". The transfer function H(s) can
be expanded into the following two forms

H(S):_tl —tzs—t3S2 _t4S3 ey, (4)
H(s):ﬂ+m_22+_’n%+...’ ©)
s 5 s

where t;s and m; s respectively denote the time-

moments and Markov parameters of the system, and
are computed from the coefficients of H(s) or from
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the system matrices as follows:

i1

1
ti==——by i + zan—i+jtj) , (6)
a, i
i—1
mi=bi—2al-7jmj, (7)
j=1

with a3 =1, 4;=0 for i<0, b;=0 for /<0 in
(6),and a; =b;=0 for i>n in(7),o0r

t,=cAd”'b, ®)
m; =cAp. )

Let C be the standard controllability matrix for the
realization (4,b,c) given in (2) and (3). As is well
known, the system provided in (2) and (3) can be
transformed to the following controllability canonical
form by the similarity transform [12]

x(£) = Ax(t) + br(?), (10)
y(@)=ex(), (11)
where
0 0 -a,
. 1 -~ 0 -
d=clac=|, T TR
0 |
A -1 T
b=C"b=[1 0 - 0], (13)
é=cC=[m my - m,). (14)

Foreach ueN,let b, = A™“bh and c, =¢é4". Then
we have a class of canonical realizations {(,:l,bu,cu ),
ueN } of H(s). It is easily seen that, for
0<u<n-1, b_, takes the form such that all
elements are zero except for the (u+1)th element
—a]

Conversely, from the Cayley-Hamilton theorem, we
have

which is equal to one, and b_, =[-a,

cA'b =—a,cA b —a, jcA" b

, (15)
—---—ach’_]b.

Then, using (8), (9) and (15), it can be shown that
¢, s take the following form:

() For u>0: ¢, =[m,, m,,, Myin]-

(i) For -(n-1)<u<-1:
Cu:[t—u e homy mn+u]‘

(i) For u<-n: ¢, =[t, 4 - lypul

2.2. Generalized impulse response Gramian

For the system described in (2) and (3), the impulse
response is given by

h(r)=ce¥'b . (16)

For i=0, recursively define [1-3]
1
(O = [h(@)da, (17)
d
hi+1(t):Ehi(t)s (18)

with Ay () = h(2).
Definition: For each wueN, the nth-order

generalized impulse response Gramian G, , is

defined by

G,, =

u,n

ha (1) B (O 1 () (Ol ()
| @hn® i ) * et Ol O |,
0 : : : :
By Oy @) By Oy a0 -+ b ()
(19)

The (nt+1)th-order generalized impulse response
Gramian G, ,,, is defined similarly. The Gramian of
the form given in (19) was first introduced in [11] in

relation to the model reduction problem. However,
detailed analysis was not performed on the properties

of the Gramian. Note that G_(,_y), corresponds to
the Gram matrix of [1,2] and G, is the impulse

response Gramian defined in [7]. In particular,

G_(”_l)’,, +1 and Gy, respectively denote the
characteristic Gram matrix [1,2] and the characteristic

impulse response Gramian [3] of the system.
3. MAIN RESULTS

In this section some important properties of the
generalized impulse response Gramian are studied.

Lemma 1 [11]: For each ueN and the
realization (zzl,bu,cu , the nth-order generalized

impulse response Gramian G,, is a unique positive
definite solution to the Lyapunov equation
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A'G, , +G, A=—clc (20)

-
In some applications such as model reduction, it is
necessary to compute the generalized impulse
response Gramian G, , for different values of u,

which requires the repeated solving of (20). However,
it is sufficient to solve (20) only once for some u as
indicated in the following lemma.

Lemma 2: For each #n, we have

G,

iin=A'G, 4, ueN. (21)
Proof: Premultiplying AT and postmultiplying

A on both sides of (20), we have

T G+ (Gl = ~Fl

= “Cuq1Cutl-

Since each G, , is a unique solution to (20), the

result follows. O

In [1-3], it was indicated that the Gram matrix and
the impulse response Gramian contain information on
the characteristic polynomial of linear time-invariant
continuous systems. It can be demonstrated that the
generalized impulse response Gramian possesses the
same property.

Theorem 1: For each u € N, partition the (n+1)th-

order generalized impulse response Gramian G, ,

as
Gun  Bun
Gu,n+1 = T ’ (23)
gu,n gu,n+1
where
By (Dhy s (1)
Ll ok (Oh,, (@
gu’n ZJ' u+1( ): u+n( ) ‘- (24)
0

hu+n—1 (t)hu+n (t)

Then the coefficients ;s in (1) or (12) are given by

T _
a:[an a, 1 - al] :_Gu,lngu,n' (25)

Proof: Since each  /,(f)  satisfies the

characteristic equation, we have

By (@) —a,h, () — @yl () = — ay by (£)
—[hu (0 hu+1 (t) hu+,,_1 (t)]a.

(26)

Then
hy, (1)
T @
B = | 0 on
hu+n—1(t)
= _Gu,na
and we have (25). 0

A different formula can be derived from the
recursive relationship given in (21). For the ease of

presentation, let 8y denote the (7,7)th element of the

(n+1)th-order generalized impulse response Gramian

G, y41, and let

8kk k1 " 8u
Gu,,,H[k,l]: gk,:k+] gk+:1,k+1 8k+1,1 .(28)
8k k1l " 8

Theorem 2: The g;s in (1) and (12) are computed

Gy pul2n+1]
Gu,n+1[1’n]' ’

= _Gu_,ln+1 (2, n](gl,n——lan + gZ,n—l) 4 (30)

(29)

where
_ T
A0 = [an—l Ay ] )

T
g],n—lz[gIZ 813 gln] >

T
g2,nv1=|:g2,n+l g3,n+1 gn,n+l] .

Proof: From (21), we obtain n equations as
follows:

8114y + Gu,n+1[29n]an—l +8€ 1= 0, (31)

2, T T
€119y + 8l n-18p-19y ~ 82 n-13-1 ~ &ns1nr1 =0 .(32)

Since Gy nr1l2,n+1] is  positive  definite,

G, h.1[2,n] exists and (30) follows from (31).

Substituting (30) into (32), we obtain the quadratic
equation of the form

dia® +d, =0, (33)
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where
d = gn—ng,n-1G;,£1+1[2,n]g1,n—1
Gy nallin]
Gunaal2,n]
d, = gg,n—lGu_,lnH[zan]gZ,n—l’"gn+1,n+1
Gy pnl2n+1]
|Gy psil2.m]]

Then (29) follows from the fact that a, is positive
since the given system is stable. 0

For the system matrix A given in (12), A7 s
given by

_an—l 1 0
n
a1
an
1
—— 0 - 0
L an R

which determines the characteristic polynomial of the
reciprocal system [2].

Theorem 3: For each u e N, partition G, ,,; as
=T

Gynit = But Bun | (35)
u,n u,n

where

(t)dt . (36)

T
ﬁ:{@ Gn2 LJ =G, Byn- 37)

n

Proof: From (26), we have

a, | 1
By ()= —— (¢
a, 0] o 0 (38)

= _[hu+l(t) hu+2(t) hu+n(t)]ﬁ-

=&

~
.

g
Il

Then,
b1 (9)
— 3 hu+2 (t)
= . t)dt
gu,n { : u ( ) (39)
hu+n (t)
= -G, ,A
and the proof is completed. 0

4. APPLICATION TO MODEL REDUCTION

In this section the results of Section 3 are applied to
the model reduction problem considered in [7,9,10].
For an nth-order stable system described by (1) or
(10) and (11), the objective is to find a reduced model
that preserves impulse energies as well as some time-
moments and Markov parameters of the original
system. The Gramian technique of [7] yields the kth-
order reduced model that preserves the first kxk
elements of the impulse response Gramian and the
first £ Markov parameters of an original system. In [9]
it was revealed that the reduced model retaining the
first kxk elements of the Gram matrix and the first
k time-moments can be derived by applying the same
technique to the reciprocal system of the original
system. In [10], more general reduced models were
obtained based on the methods of [7] and [9].
Assuming two different forms of the reduced model,
and applying the techniques of [7] and {9] separately
to (17) or (18), multiple reduced models were derived
so that some time-moments and/or Markov parameters
as well as diagonal elements of impulse response
Gramian and/or Gram matrix are preserved in the
reduced models. It will be shown that the reduced
models of [10] can be obtained more efficiently by
applying the results of the previous section.

From lemma 1, G,, and G,,;, are respectively

u,n
unique solutions to the following two Lyapunov
equations for the realization (4,b,,c,)

’aTGu,n + Gu,n"’i = _cgcu ’ (40)

T p T AT T 5
A Gy g+ Gy pd=—cypcyy =—4 ¢, c, 4. (41)

Premultiplying AT and postmultiplying A on
both sides of (41), we have

G

~—1 T
u+1,nA +A4 Gu+1,n ==C

T (42)
The Lyapunov equations derived in [7] and [9] are
special cases of (40) and (42) respectively with =0
and u=-n.
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Now let (zau,k,bu’k,cu’k) be the realization in

canonical form for the kth-order reduced model and

let G,, denote the kxk principal leading
submatrix of G, , . If

aT v T

Ay 1k Oy + G Ao = —Cu kCus (43)

then the reduced model clearly preserves the first
kxk elements of the original sth-order impulse

response Gramian G, ,, . Similarly if

AloAT T
Gyt h Ak + AujCuri e = —CukCui > (44)

then the first kx4 elements of G,,,, are retained
in the reduced model. If b, and c,; are chosen

appropriately, then some time-moments and/or
Markov parameters of the original system also can be
preserved in the reduced model. Consequently two

kth-order reduced models, denoted by H; and

Hy, respectively, can be obtained for each u.
Let

0 - 0 -g

. 1 0 -a_

A =] . . 45)
0 - 1 -g

For Hy, , partition the original (k+1)th-order

generalized impulse response Gramian G, ;,; as

Gu,k gu,k
Gups1=| r (46)
8uk  Suk+l

and compute g;s in (45) as in Theorem 1, i.e.,

— — _1T -1
@ G| =G 8- 47)

Let ¢,; be the k-dimensional row vector that
consists of the first £ elements of ¢, and let

S—u
by x = A kbo
dimensional column vector that consists of the first &

where bo,k denotes the k-

elements of 5. Then the first reduced model Hi'y

is completed. It is easily seen that Hy', preserves the

first (—u)

Markov parameters of the original system.
Alternatively, it can be shown that the Lyapunov (43)
holds. Hence the first kx% elements of the original

time-moments and the first (k+u)

nth-order impulse response Gramian G, , are also
retained in the reduced model.
For Hj,, we compute ;11: | instead of Qlu,k

using Theorem 3. Let

- 1 0
Agp =4 = o (48)
G 0
- 0 0

and partition G, ;,, as

_T
Gy =| Z01 Bk, (49)
gu,k Gu,k
Then
~ ~ ~ 17T —=_1—
(@ @Gy - @] =-G 18z (50)

and the second reduced model Hj; is completed by

computing Izlu,k = ;lu_ }{ and choosing the vectors
b,y and ¢, asin the first model. It is again easily

seen that Hj, preserves the first (-u) time-

moments and the first (£+u) Markov parameters of
the original system. However the first /kx#k
elements of G, , are maintained in the reduced
model since the Lyapunov equation (44) holds in this
case.

Applying the above method for different values of u,
we can obtain a family of reduced models. Note that
the kth-order reduced models derived by the methods

of [7] and [9] respectively correspond to Hl(f r and
Hj . On the other hand, 2k reduced models Hy',

Hé‘jcl, —(k-1)<u <0, are the same as those

obtained by the technique of [10].
Example: Consider a fourth-order system with the
transfer function [10]

2
H(s)= 0.01s% +0.1s +1

N 4 3 2 - (D
0.0121s" +0.03s” +1.1s“ +2.3s +1

The first two time-moments and the first four Markov
parameters of (51) are respectively computed by
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t] = —1, t2 = 22,
my =0.826, my =6.216, my =-7.893.
Then the state-space realization (,:1,5,6) of (51) in

controllability canonical form is given by

m :0,

0 0 0 -82.645
. |1 0 0 -190.083| .
A= . b=[1 0 o o],
0 1 0 -90.909
0 0 0 2479

é=[0 0.826 6.216 -7.893].

Solving the Lyapunov (20) for u =0, we obtain the
fourth-order generalized impulse response Gramian
Goa by

0.232 0 —1.258 0.342
Gos = 0 1.258 —0.342 -94.375 '
’ -1.258 0342 89.238 -19.316
0342 -94.375 -19.316 7944.849
(52)

From the recursive relationship given in (21), we have

129 -05 -0.232  0.826]]

-0.5 0232 0 -1.258
G_1,4: > (53)
-0232 0 1.258 —0.342
| 0.826 —1.258 -0.342 89.238
[ 4569 -2.42 0.91 0.5 |
-2.42 1.29 -0.5 -0.232
G4 = - (54)
091 -0.5 0232 0
| 05 -0232 0 1.258 |

Now we derive four second-order reduced models
Hiy, H{Z], -1<u<0. For Hﬁz, we have from
(46), (47) and (52)

@] 0232 0 T'[-1258] [5422 (55)
Z| | 0 1258) |-0342] {0272]
Hence HBZ is given by
i _[o -s422) [
271 0272 % o)
cop =[m my]=[0 0.826].

Similarly Hj} is obtained from (46), (47) and (53)

as

4o _fo —res2] . [0
M2 23540 TR T02

0—1,2 = [tl ml] = [—‘1 0] .
For Hy%, we obtain from (49), (50) and (53)
a] [o232 o T'[-05 7 [2155
a| | 0 1258] |-0232] [0.184]
Then
A 2155 11" Jo
A_Lz: =
-0.184 0 1

by, and c_;, are given as in Hl_%. Using the

-5.423
—-11.688 |

same procedure, H2_22 is obtained from (49), (50)
and (54) as

L [0 1365
22711 2048/

. -1.365
boy=Aby, = ,
22 02 {—2.948}

cip=[n n]=[22 -1].

Note that four second-order reduced models acquired
above are the same as those derived in [10].

5. CONCLUSIONS

In this paper we studied the properties of a
generalized impulse response Gramian. The recursive
relationship satisfied by the family of Gramians was
established. Tt was shown that the characteristic
polynomial of the linear time-invariant continuous
system can be determined from the generalized
impulse response Gramian. Usefulness of the
generalized impulse response Gramian for model
reduction was also discussed.
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