• Title/Summary/Keyword: Linear Equation of Motion

Search Result 324, Processing Time 0.025 seconds

Study for the Safety of Ships' Nonlinear Rolling Motion in Beam Seas

  • Long, Zhan-Jun;Lee, Seung-Keon;Jeong, Jae-Hun;Lee, Sung-Jong
    • Journal of Navigation and Port Research
    • /
    • v.33 no.9
    • /
    • pp.629-634
    • /
    • 2009
  • Vessels stability problems need to resolve the nonlinear mathematical models of rolling motion. For nonlinear systems subjected to random excitations, there are very few special cases can obtain the exact solutions. In this paper, the specific differential equations of rolling motion for intact ship considering the restoring and damping moment have researched firstly. Then the partial stochastic linearization method is applied to study the response statistics of nonlinear ship rolling motion in beam seas. The ship rolling nonlinear stochastic differential equation is then solved approximately by keeping the equivalent damping coefficient as a parameter and nonlinear response of the ship is determined in the frequency domain by a linear analysis method finally.

Modelling and Analysis of a Vibrating System Incorporating a Viscoelastic Damper (비선형 점탄성 댐퍼를 포함한 진동시스템의 모델링 및 해석)

  • Yang, Seong-Young;Chang, Seo-Il;Kim, Sang-Joo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.06a
    • /
    • pp.449-454
    • /
    • 2000
  • A three-parameter model of viscoelastic damper, which has a non-linear spring as an element is incorporated into an oscillator. The behavior of the damper model shows non-linear hysteresis curves which is qualitatively similar to those of real viscoelastic materials. The motion is governed by three-dimensional non-linear dynamical system of equations. The harmonic balance method is applied to get analytic solutions of the system. The frequency-response curves show that multiple solutions co-exist and that the jump phenomena can occur. In addition, it is shown that separate solution branch exists and that it can merge with the primary response curve. Saddle-node bifurcation sets explain the occurences of such non-linear phenomena. A direct time integration of the original equation of motion validifies the use of the harmonic balance method to this sort of problem.

  • PDF

Non-linear Vibration of a System Incorporating a Hysteretic Damper (비선형 히스테리시스 댐퍼를 갖는 진동계의 해석)

  • 양성영;장서일;김상주
    • Journal of KSNVE
    • /
    • v.10 no.3
    • /
    • pp.531-535
    • /
    • 2000
  • A three-parameter model of viscoelastic damper which has a non-linear spring as an element is incorporated into an oscillator. The behavior of the damper model shows non-linear hysteresis curves which is qualitatively similar to those of real viscoelastic materials. The motion is governed by get analytic solutions of the system. The frequency-response curves show that multiple solutions co-exist and that the jump phenomena can occur. In addition it is shown that separate solution branch exists and that it can merge with the primary response curve. Saddle-node bifurcation sets explain the occurences of such non-linear phenomena. A direct time intergration of the original equation of motion validifies the use of the harmonic balance method to this sort of problem.

  • PDF

Performance Characteristics of Tubular Linear Iduction Motor (동기형 직선유도전동기의 동작특성)

  • Lee, Eun-Ung
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.36 no.3
    • /
    • pp.153-162
    • /
    • 1987
  • The purpose of this paper is to analysis and develop theoretically the characteristics of tubular linear induction motor, which is a special industrial motor that generates directly thrust force from electrical power. The Poisson equation about vector potential which is created by the application of Maxwell electromagnetic equation with the speed considered, results in modified Bessel equation by the assumption that is applied to each region of the experimental motor. Vector potential, magnetic flux density, secondary current, and thrust force according to its region respectively were found out by substituting boundary condition for this equation and rearranging. Besides, a attendant materials, that is, thermal characteristic, which is one of the characteristics under the operation of experimental motor each part's magnetic flux distribution characteristics within active zone, the required time for reciprocating motion, and variation of power factor vs. a slip were found.

  • PDF

A Study of Weighing System to Apply into Hydraulic Excavator with CNN (CNN기반 굴삭기용 부하 측정 시스템 구현을 위한 연구)

  • Hwang Hun Jeong;Young Il Shin;Jin Ho Lee;Ki Yong Cho
    • Journal of Drive and Control
    • /
    • v.20 no.4
    • /
    • pp.133-139
    • /
    • 2023
  • A weighing system calculates the bucket's excavation amount of an excavator. Usually, the excavation amount is computed by the excavator's motion equations with sensing data. But these motion equations have computing errors that are induced by assumptions to the linear systems and identification of the equation's parameters. To reduce computing errors, some commercial weighing system incorporates particular motion into the excavation process. This study introduces a linear regression model on an artificial neural network that has fewer predicted errors and doesn't need a particular pose during an excavation. Time serial data were gathered from a 30tons excavator's loading test. Then these data were preprocessed to be adjusted by MPL (Multi Layer Perceptron) or CNN (Convolutional Neural Network) based linear regression models. Each model was trained by changing hyperparameter such as layer or node numbers, drop-out rate, and kernel size. Finally ID-CNN-based linear regression model was selected.

A Study of Comparison with Free Wave Number Between a New Cylinderical Wave Equation and the Wave Equation by Junger and Feit (자유파수를 이용한 새로운 실린더 운동방정식과 Junger and Feit의 실린더 운동방정식의 비교연구)

  • Jo, Heung-Kuk
    • The Journal of the Acoustical Society of Korea
    • /
    • v.15 no.6
    • /
    • pp.47-51
    • /
    • 1996
  • The Cylindrical Shell Equation is one of the fundamental tools in the study of the noise analysis in the cylindrical shell. Therefore, lot of the acousticians induced many cylindrical shell motion equations.[1] In the Reference[6], we introduced the newly induced cylindrical Shell Equation and Junger and Feit's shell equation[5], and computed the free wave number with the linear Equation with the supposed solution, in the case of the free motion of the shell. In this paper, we compared above cylindrical shell equations by using dispersion curve of free wave number and we describe the physical mean for the dispersion curve with ring-frequency and ring-extention-frequency. With this result, we proves the useful of a newly induced cylindrical shell equation and we can analyse the Structure-Borne Sound of the shell with this equation in the application.

  • PDF

Data Reduction and Analysis Technique for the Resonant Column Testing by Its Theoretical Modeling (공진주 실험의 이론적 모델링에 의한 자료분석 및 해석기법의 제안)

  • 조성호;황선근;강태호;권병성
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2003.03a
    • /
    • pp.291-298
    • /
    • 2003
  • The resonant column testing is a laboratory testing method to determine the shear modulus and the material damping factor of soils. The method has been widely used for many applications and its importance has been increased. Since the establishment of the testing method in 1963, the low-technology electronic devices for testing and data acquisition have limited the measurement to the amplitude of the linear spectrum. The limitations of the testing method were also attributed to the assumption of the linear-elastic material in the theory of the resonant column testing and to the use of the wave equation for the dynamic response of the specimen. For the better theoretical formulation of the resonant column testing, this study derived the equation of motion and provided its solution. This study also proposed the improved data reduction and analysis method for the resonant column testing, based on the advanced data acquisition system and the proposed theoretical solution for the resonant column testing system. For the verification of the proposed data reduction and analysis method, the numerical simulation of the resonant column testing was performed by the finite element analysis. Also, a series of resonant column testing were peformed for Joomunjin sand, which verified the feasibility, of the proposed method and showed the limitations of the conventional data reduction and analysis method.

  • PDF

Nonlinear hierarchical motion estimation method based on decompositionof the functional domain (범함수 정의역 분할에 바탕을 둔 비선형 계층적 움직임 추정기법)

  • 심동규;박래홍
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.21 no.4
    • /
    • pp.807-821
    • /
    • 1996
  • In this paper, we proposed a nonlinear hierarchical mtion estimation method. Generally, the conventional hierarchical motion estimation methods have been proposed for fast convergence and detection of large motions. But they have a common drawback that large error in motion estimation is propapated across motion discontinuities. This artifiact is due to the constriaint of motion continuity and the linear interpolation of motion vectors between hierarchical levels. In this paper, we propose an effective hierarchical motion estimation mechod that is robust to motion discontinuities. The proposed algorithm is based on the decomposition of the functional domain for optimizing the intra-level motion estimation functional. Also, we propose an inter-level nonlinear motion estimation equation rather than using the conventional linearprojection scheme of motion field. computer simulations with several test sequences show tht the proposed algorithm performs better than several conventional methods.

  • PDF

A multiple scales method solution for the free and forced nonlinear transverse vibrations of rectangular plates

  • Shooshtari, A.;Khadem, S.E.
    • Structural Engineering and Mechanics
    • /
    • v.24 no.5
    • /
    • pp.543-560
    • /
    • 2006
  • In this paper, first, the equations of motion for a rectangular isotropic plate have been derived. This derivation is based on the Von Karmann theory and the effects of shear deformation have been considered. Introducing an Airy stress function, the equations of motion have been transformed to a nonlinear coupled equation. Using Galerkin method, this equation has been separated into position and time functions. By means of the dimensional analysis, it is shown that the orders of magnitude for nonlinear terms are small with respect to linear terms. The Multiple Scales Method has been applied to the equation of motion in the forced vibration and free vibration cases and closed-form relations for the nonlinear natural frequencies, displacement and frequency response of the plate have been derived. The obtained results in comparison with numerical methods are in good agreements. Using the obtained relation, the effects of initial displacement, thickness and dimensions of the plate on the nonlinear natural frequencies and displacements have been investigated. These results are valid for a special range of the ratio of thickness to dimensions of the plate, which is a characteristic of the Multiple Scales Method. In the forced vibration case, the frequency response equation for the primary resonance condition is calculated and the effects of various parameters on the frequency response of system have been studied.

The Motion Response of an Oil Boom with Flexible Skirt (유연한 스커트를 가진 오일붐의 운동응답해석)

  • 성홍근;조일형;최항순
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.7 no.2
    • /
    • pp.156-162
    • /
    • 1995
  • A numerical method for a 2-D oil boom model considering the flexibility of skirt has been developed The neater is assumed rigid and the skirt is tensioned membrane having a point mass at its end The fluid motion is potential. The kinematic condition which demands the continuity of the displacement is imposed at the joint between the floater and the skirt. The dynamic condition for the point mass is imposed at the bottom end of the skirt. The numerical method is based on the Green's function method in the frame of linear potential theory. It finds it's solution simultaneously from the total system of three equations, integral equation, the equation of motion of the floater and the equilibrium equation of the deformation of the skirt. Integral equation is derived by applying the Green's theorem to radiation potential and Green's function. Proper descretization of those three equations leads to the system of a linear algebraic equation. Due to the flexibility of skirt the motion of floater can be diminished in some range of wave frequency and furthermore the mechanism of resonance of the oil boom can be changed. The motion responses of various oil booms have been compared varying the length of the skirt and the point mass. The numerical method has been validated indirectly from the good correspondence between the motion responses of the flexible skirt model and the rigid skirt model in low frequency limit.

  • PDF