• Title/Summary/Keyword: Linear DC Motor

Search Result 157, Processing Time 0.028 seconds

Brushless DC Motor Electromagnetic Torque Estimation with Single-Phase Current Sensing

  • Cham, Chin-Long;Samad, Zahurin Bin
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.3
    • /
    • pp.866-872
    • /
    • 2014
  • The purpose of this paper was to find an effective method for measuring electromagnetic torque produced by a brushless DC motor with single-phase current sensing in real-time. A torque equation is derived from the theory of brushless DC motor. This equation is then validated experimentally with a motor dynamometer. A computer algorithm is also proposed to implement the electromagnetic torque estimation equation in real-time. Electromagnetic torque is a linear function of phase current. Estimating the electromagnetic torque in real-time using single-phase current is not appropriate with existing equations, however, because of the rectangular alternating-pulse nature of the excitation current. With some mathematical manipulation to the existing equations, the equation derived in this paper overcame this limitation. The equation developed is simple and so it is computationally efficient, and it takes only motor torque constant and single-phase current to evaluate the electromagnetic torque; no other parameters such as winding resistances, inductances are needed. The equation derived is limited to the three-phase brushless DC motor. It can, however, easily be extended to the multiphase brushless DC motor with the technique described in this paper.

The Design of a Speed-position Controller using a Parameter Estimation Method for the Linear Brushless DC Motor (파라미터 추정방법을 이용한 선형추진브러시리스 직류전동기의 속도-위치제어기 설계)

  • 박성수;최중경;변지섭;윤성은;류정오
    • Proceedings of the IEEK Conference
    • /
    • 2001.06e
    • /
    • pp.143-146
    • /
    • 2001
  • Servomotors, especially linear brushless servomotors have numerous advantages over ball screws, timing belts, rack/pinion drives and friction drives compared wi th rotary servomotors This paper proposes an linear regression method as the estimated ion of unknown parameters from the linear brushless DC motor The estimated parameters are used to tune the gain of controller. In order to agree with this purpose, Digital Signal Processor (TMS320F240), developed for implementation of the motor control, is adopted in this study. The processor playing an important role in controller has A/D converters, PWM generators, riched I/O ports internally.

  • PDF

A Study on the Output Voltage Control of Series-Parallel Resonant type DC/DC Converter for Transverse Flux Linear Motor (TELM에 적용한 직병렬 공진형 DC/DC 컨버터의 출력전압 제어에 관한 연구)

  • Hwang Gye Ho;Lee Young Sik;Jeon Jin Yong;Bang Deok Je;Kim Ho Jong;Shin Byoung Chol;Kang Do Hyun;Kim Jong Moo
    • Journal of the Semiconductor & Display Technology
    • /
    • v.4 no.1 s.10
    • /
    • pp.9-16
    • /
    • 2005
  • In this paper, with loosely coupled transformer Relies-parallel resonant type DC/DC converter is analyzed and adopted to the power source of a TFLM(Transverse Flux Linear Motor). To get more efficient operating mode of the series-parallel resonant type DC/DC converter, theoretical analysis using normalized parameters are accepted. The analysis includes a specially made ferrite transformer with two separately wound half cores in order to evaluate analytically and experimentally the changes in magnetizing the leakage fluxes and inductances caused by the distance between the halves. The proposed converter must be operated in switching Pattern III among the three switching patterns for the Zero Voltage Switching operation. According to Pulse Frequency Modulation(PFM) control method, the output voltage of the proposed circuit can be controlled. The results of the theoretical development are compared with practical measurements from a prototype system.

  • PDF

Design and Dynamic Analysis of Air-core Coil type Linear DC Motor (공심 코일형 리니어 DC 모터의 설계 및 동특성 해석)

  • Gang, Gyu-Hong;Hong, Jeong-Pyo;Kim, Gyu-Tak;Ha, Geun-Su;Jeong, Jung-Gi;Im, Tae-Bin
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.49 no.3
    • /
    • pp.165-171
    • /
    • 2000
  • This paper proposes a technique to design of air-core type Linear DC Motor(LDM) by using Equivalent Magnetizing Current(EMC) method and has performed its dynamic analysis. The magnetic flux density differ in accordance with airgap position due to difference of mechanical and magnetic air gap length and the coil shape has an influence on the thrust. Therefore, the analysis of magnetic field due to the magnets is carried out by EMC. The phenomena according to the various coil various coil shape under the same Magneto Motive Force(MMF) has been analyzed and its result is applied to the design process. The appropriateness of the proposed technique is confirmed by Finite Element Method(FEM) and its dynamic analysis is carried out from the coupling of the electrical circuit equation and mechanical kinetic equation.

  • PDF

Transient Response Characteristic of a Linear Actuator in a Spring Stiffness Variations (공진형 선형 액추에이터의 스프링 강성 변화에 따른 과도응답특성)

  • Kang Do-Hyun;Hong Do-Kwan;Woo Byung-Chul
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.54 no.3
    • /
    • pp.134-138
    • /
    • 2005
  • A typical conventional systems of a linear motion use rack and pinions or ball screws to convert rotary motions from DC servo motors. A linear motor has been used a several field for a MEMS technology and a aircraft carrier. We have studied a transient response of a linear actuator with a damping ratio, spring constant and a pressed power for a constant stroke control.

Development of Coreless Linear Motor (무철심형 리니어모터 개발)

  • 정재한
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2000.04a
    • /
    • pp.291-296
    • /
    • 2000
  • Liner DC motors are widely used for servo-actuator, which would be applied for semiconductor equipments and precise machining systems. we have been developed linear DC motor with high speed, acceleration and position accuracy. From performance test, the position accuracy. From performance test, the position and repeatability accuracy were able to be controlled with 10 ${\mu}{\textrm}{m}$ and $\pm$1 ${\mu}{\textrm}{m}$, respectively. The highest acceleration and speed were obtained 3 G and 2m/sec, respectively. Static thrust force was 270N, and then error was 25%.

  • PDF

Precise Positioning Control of Linear Brushless DC Motor using Disturbance Observer (외란 관측기를 이용한 리니어 BLDC 모터의 정밀위치제어)

  • Kho, Jae-Won;Lee, Kyo-Beum;Koo, Young-Mo
    • Proceedings of the KIEE Conference
    • /
    • 2001.07d
    • /
    • pp.2399-2401
    • /
    • 2001
  • This Paper presents a positioning control method of the LBLDCM(Linear Brushless DC Motor) under friction. The friction may cause steady state position error. So it is necessary to consider friction effect for precision positioning control. The proposed control method uses disturbance observer algorithm and friction compensation. The experimental results of the proposed control method based on the disturbance observer are presented to show its effectiveness.

  • PDF

Design for CMAC Neural Network Speed Controller of DC Motor by Digital Simulations (디지털 시뮬레이션에 의한 CMAC 신경망 직류전동기 속도 제어기 설계)

  • 최광호;조용범
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.6 no.3
    • /
    • pp.273-281
    • /
    • 2001
  • In this paper, we propose a CMAC(Cerebellar Model Articulation Controller) neural network for controlling a non-linear system. CMAC is a neural network that models the human cerebellum. CMAC uses a table look-up method to resolve the complex non-linear system instead of numerical calculation method. It is very fast learn compared with other neural networks. It does not need a calculation time to generate control signals. The simulation results show that the proposed CMAC controllers for a simple non-linear function and a DC Motor speed control reduce tracking errors and improve the stability of its learning controllers. The validity of the proposed CMAC controller is also proved by the real-time tension control.

  • PDF

A Experiment of the damping effect for Electromagnetic Damper using DC Motor and Ballscrew (DC Motor와 Ballscrew를 이용한 Electromagnetic Damper Damping 효과 실험)

  • Kang, Jeong-Ho;Lee, Hac-Choel;Jeong, Young-Suk
    • Proceedings of the KIPE Conference
    • /
    • 2008.06a
    • /
    • pp.124-126
    • /
    • 2008
  • In this Paper, the modeling of the electromagnetic damper for automobile suspension is presented and the validation of the model is demonstrated by experiments. An electromagnetic damper, composed of a rotary DC motor, and a ball screw and nut. The damper then operates as a linear electric actuator. The damper then operate as a linear electric actuator. The results indicate the proposed system is feasible and it is proved that the electromagnetic damper has better than oil damper of passive control system.

  • PDF

The analysis of the thrust characteristics by a measurement of the back-EMF in a brushless DC linear motor (브러시리스 DC 선형 모터에서 역기전력 측정을 통한 추력 특성 분석)

  • Lee, Chun-Ho;Choi, Moon-Suk;Lee, Sang-Lak;Kim, Yong-Yil;Hyun, Dong-Seok
    • Proceedings of the KIEE Conference
    • /
    • 1997.11a
    • /
    • pp.10-12
    • /
    • 1997
  • For a given brushless DC linear motor, we analyze the thrust characteristics. We measure the back-EMF and then calculate the thrust with it. To compare the thrust, we measure it direct with force-torque meter and we calculate it from Lorentz equation. As the thrust and the back-EMF vary linearly according to the current and the velocity respectively, we define the thrust constant and the back-EMF constant. To match the motor to its controller, we calculate the thrust constant and the back-EMF constant. The result calculated with the back-EMF differs from that of the measurement by only 4.4%.

  • PDF