• Title/Summary/Keyword: Linear DC Motor

Search Result 157, Processing Time 0.051 seconds

Development of a Aerostatic Guideway Driven by the Linear Motor (리니어모터를 이용한 초정밀 공기정압안내면 개발)

  • 박종하;황주호;박천홍;홍준희
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2003.10a
    • /
    • pp.36-40
    • /
    • 2003
  • In order to discuss the availability of aerostatic guideways driven by the coreless linear motor to ultra precision machine tools, a prototype of guideway is designed and tested in this research. A coreless linear DC motor with the continuous force of 156N and a laser scale with the resolution of $0.01\mu\textrm{m}$ are used as the feeding system. The experiments are performed on the static stiffness, motion accuracy, positioning accuracy, microstep response and variation of velocity. The guideway also has $0.21\mu\textrm{m}$ of positioning error and $0.09\mu\textrm{m}$ of repeatability, and it shows the stable response against the $0.01\mu\textrm{m}$ resolution step command. The velocity variation of feeding system is less than 0.6%. From these results, it is confirmed that the aerostatic guideway driven by the coreless linear motion is very useful for the ultra precision machine tools.

  • PDF

The study on the design for a high Precision Linear DC Motor Driver in industry (고정밀 산업용 리니어 DC 모터 드라이버 설계에 관한 연구)

  • Ha, Keun-Soo;Im, Tae-Bin;Chung, Joong-Ki;Kim, Joo-Han
    • Proceedings of the KIEE Conference
    • /
    • 2000.07d
    • /
    • pp.3078-3080
    • /
    • 2000
  • In this paper. we designed a high precision Linear DC Motor(LDM) Driver with $120^{\circ}$ commutation method. It was composed of three parts which were divided into Power and Inverter Circuit. Analog Circuit with PWM Generation and Fault Protections. and Logic Circuit. We selected PMAC Controller by Delta Tau Co. for testifying a high accuracy of a designed driver. A high precision driver enhanced a response to changes of velocity and acceleration in motion and improved the accuracy.

  • PDF

Decoupling of Thrust Force and Levitation Force of Transverse Flux Linear Induction Motor by the Active Compensation of Magnetic force across the Air-Gap (공극력의 능동적 보상을 통한 횡자속 선형 유도 구동기의 추력과 부상력의 비연성화)

  • 정광석;백윤수
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.11
    • /
    • pp.91-98
    • /
    • 2004
  • TFLIM(Transverse Flux Linear Induction Motor), making its closed magnetic path with the direction of the traveling field orthogonal, had been developed to decrease an edge effect of the general induction motor. To control the levitation force and the thrust force on the secondary part of TFLIM independently, the various methodologies have been presented. When we try to achieve the independent control using only the multi-phase inputs assigned in the stator coils as an approach, in which condition we can minimize the coupling effect between two forces\ulcorner In this paper, we show the qualitative influence of a slip frequency, an ac magnitude, a dc offset superposed in the ac power, and a major parameter of TFLIM on the couple through the computer simulation. And to realize the independent motions between levitation and thrust motion without any auxiliary means fur isolation of the secondary part of TFLIM, the decouple compensator is suggested, including the experimental results.

Speed Field orient control of permanent magnet linear motor according to determination of system rate. (직선형 영구 자석 동기 모터의 시스템 정격 선정에 따른 속도 제어 특성)

  • Jang, Seok-Myeong;You, Dae-Joon;Jang, Won-Bum;Yang, Moon-Sub
    • Proceedings of the KIEE Conference
    • /
    • 2005.07b
    • /
    • pp.1273-1275
    • /
    • 2005
  • This paper presents design of speed control system for slot less iron-cored PM linear synchronous motor using space vector PWM. the design must be considered by the useable limits of the DC link voltage and dynamic operating rage as well as the characteristics of design parameters in a point of system. Therefore, in this paper, the permissible operating range of manufactured motor by determination of rate speed and rate thrust according to switching scheme of DC link voltage are offered. The vector control requires information about rotor position. And we can need to the Hall sensor for sampling current. In order to agree with this purpose, Digital Signal Processor(TMS320F240x) developed for implementation of a speed Field Oriented Control.

  • PDF

Simplified 3D Finite Element Analysis of Linear Inductor Motor for Integrated Magnetic Suspension/Propulsion Applications (자기부상 및 추진 일체형 리니어 인덕터 모터의 간이형 3차원 유한요소해석)

  • Jeong, Sang-Sub;Jang, Seok-Myeong
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.49 no.6
    • /
    • pp.371-379
    • /
    • 2000
  • The 4-pole linear homopolar synchronous motor (LHSM), so called linear inductor motor, is composed of the figure-of-eight shaped 3-phase armature windings, DC field windings, and the segmented secondary with the transverse bar track. To reduce the calculation time, the simplified 3D finite element model with equivalent reluctance and/or permanent magnet is presented. To obtain a clear understanding, propriety and usefulness of the developed model, we compare with the results of simplified 3D FEA, general 3D FEA and test. Consequently, the results of simplified and 3D FEM analysis are nearly identical, but much larger than that of static test at d-axis armature excitation. Therefore the improved FEA model, such as full model with half slot, is needed for the precise analysis.

  • PDF

DC Servo Motor Insensitive Position System by Multi-loop Feedback Control (멀티루프 피드백 방식에 의한 직류 서보 모타의 인센서티브 (insensitive) 위치 제어기의 구성)

  • Lee, Kyu-Chan;Won, Jong-Su
    • Proceedings of the KIEE Conference
    • /
    • 1988.11a
    • /
    • pp.28-31
    • /
    • 1988
  • This paper proposes a new linear adaptive position controller of DC servo motor. The proposed method can improve the drive performance and rapidly reject the state error caused by both parameter variations and force disturbance. The structure of this adaptive control method is based multiloop feedback control and model reference control. Simulation results are presented to verify the improved response when parameter variations and load disturbance give relatively significant effects to the servo system.

  • PDF

Development of a Hydrostatic Guideway Driven by the Linear Motor (리니어모터를 이용한 초정밀 유정압안내면 개발)

  • 박천홍;황주호;오윤진;이찬홍
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.343-346
    • /
    • 2003
  • In order to discuss the availability of the hydrostatic guideway driven by the coreless linear motor to ultra precision machine tools, a prototype of guideway is designed and tested in this research. A coreless linear DC motor with the continuous force of 156 N and a laser scale with the resulution of 10 nm are used as the feeding system. The experiments are performed on the static stiffness. motion accuracy, positioning accuracy. microstep response and variation of velocity. The guideway has the infinite axial stiffness within 50 N of applied load, and has 0.08 ${\mu}{\textrm}{m}$ of linear motion error and 0.1 arcsec of angular motion error. It also has 0.21 ${\mu}{\textrm}{m}$ of positioning error and 0.09 ${\mu}{\textrm}{m}$ of repeatability, and it shows the stable response against the 10 nm resolution step command. The velocity variation of feeding system is less than 5%. From these results, it is confirmed that the hydrostatic guideway driven by the coreless linear motor is very useful for the ultra precision machine tools.

  • PDF

Development of an Ultra Precision Hydrostatic Guideway Driven by a Coreless Linear Motor

  • Park Chun Hong;Oh Yoon Jin;Hwang Joo Ho;Lee Deug Woo
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.6 no.2
    • /
    • pp.55-60
    • /
    • 2005
  • In order to develop the hydrostatic guideways driven by a core less linear motor for ultra precision machine tools, a prototype of guideway is designed and tested. A coreless linear DC motor with a continuous force of 156 N and a laser scale with a resolution of 0.01 ㎛ are used in the system. Experimental analysis on the static stiffness, motion errors, positioning error and its repeatability, micro step response and velocity variation of the guideway are performed. The guideway shows infinite stiffness within 50 N applied load in the feed direction, and by the motion error compensation method using the Active Controlled Capillary, 0.08 ㎛ linear motion error and 0.1 arcsec angular motion error are acquired. The guideway also reveals 0.21 ㎛ positioning error and 0.09 ㎛ repeatability, and it shows stable responses following a 0.01 ㎛ resolution step command. The velocity variation of feeding system is less than 0.6 %. From these results, it is estimated that the hydrostatic guideway driven by a coreless linear motor is very useful for the ultra precision machine tools.

Development of a Hydrostatic Guideway Driven by the Linear Motor (리니어모터를 이용한 초정밀 유정압안내면 개발)

  • 박천홍;오윤진;황주호;이득우
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.6
    • /
    • pp.139-144
    • /
    • 2004
  • In order to discuss the availability of hydrostatic guideways driven by the coreless linear motor to ultra precision machine tools, a prototype of guideway is designed and tested in this research. A coreless linear DC motor with the continuous force of 156 N and a laser scale with the resolution of 0.01 ${\mu}{\textrm}{m}$ are used as the feeding system. The experiments are performed on the static stuffiness, motion accuracy, positioning accuracy, microstep response and variation of velocity. The guideway has the infinite axial stillness within 50 N of applied load, and by the motion error compensation method using the Active Controlled Capillary, 0.08 ${\mu}{\textrm}{m}$ of linear motion error and 0.1 arcsec of angular motion error are acquired. The guideway also has 0.21 ${\mu}{\textrm}{m}$ of positioning error and 0.09 ${\mu}{\textrm}{m}$ of repeatability, and it shows the stable response against the 0.01 ${\mu}{\textrm}{m}$ resolution step command. The velocity variation of feeding system is less than 0.6 %. From these results, it is confirmed that the hydrostatic guideway driven by the coreless linear motor is very useful fur the ultra precision machine tools.

A Study on the High Speed of Cutting Tool Feed System for the Noncircular Machining (비진원 가공용 공구 이송장치의 고속화 성능에 관한 연구)

  • 김성식
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.7 no.4
    • /
    • pp.96-103
    • /
    • 1998
  • With the advance of processing technology , so as to spare fuel, piston heads used in automobile reciprocating engine have complex 3-dimension, with respect to shape such as ovality, profile, eccentricity, offset, recess. Therefore, coming out of the existing process work used master cam. the process work is performed using a CNC lathe. For a precision processing, the processing work is need to make study of high speed feed gear synchronized with the rotative speed of main spindle. And then the high speed feeding system must maintain high dynamic stiffness, high speed and high positioning accuracy . In this paper, in order to achieve high speed cutting tool feeding. The linear brushless DC motor is used for satisfying this process work. The ball bush and turicite is used as the guidance of the feed gear system. Also linear encoders, digital servo amplifiers and controller are used for controlling driving motor. This paper presents the design and simulation of the new tool feed system for noncircular machining.

  • PDF