• Title/Summary/Keyword: Linear Actuator Model

Search Result 182, Processing Time 0.025 seconds

Gain-scheduled controller design of an Active Suspension System with an Asymmetric Hydraulic Cylinder using Feedback linearization technique & optimal (비대칭형 유압 실린더를 사용한 능동현가 시스템에서의 궤한 선형화와 최적제어기법을 이용한 이득계획제어기 설계)

  • Jang, Yu-Jin;Kim, Sang-Woo
    • Proceedings of the KIEE Conference
    • /
    • 1998.07b
    • /
    • pp.452-454
    • /
    • 1998
  • Asymmetric cylinders are usually used as an actuator of active suspensions. The conventional optimal controller design does not include actuator dynamics as a state. and force controller is needed to track the desired force. But the actuator is not ideal, so performance of an active suspension system is degraded. In this paper, we take account nonlinear actuator dynamics and obtain a linear model using a feedback linearization technique then apply optimal control method. For real time application, gain-scheduling method is used. Effectiveness of proposed method is demonstrated by numerical simulation of 1/4 car model.

  • PDF

Investigation of Kinematic Relation Between Actuator and Control Surface Deflection Using Aileron Linkage Analysis (에일러론 링키지 해석을 통한 작동기 변위와 조종면 변위의 상관관계 규명)

  • Lee, Sugchon;Lee, Sang-Jong
    • Journal of Aerospace System Engineering
    • /
    • v.6 no.3
    • /
    • pp.24-28
    • /
    • 2012
  • An actuator should be added to a existing control linkage to make manned aircraft to unmanned. But it is quiet difficult to synchronize actuator with control surface because non-linear error necessarily occurs when four-bar linkage acts in three dimensional motion. In addition, in point of controller design view, while a real-time model needs the control surface deflection as its input, controller needs the actuator command as its output. Hence, the relation between both should be investigated. In this paper, the mathematical relation between actuator and control surface deflection investigated by kinematic analysis of a plant aircraft. The performance margin of the selected actuator also was verified.

Dynamic Analysis of Linear Oscillatory Actuator for Stirling Refrigerator (스털링 냉동기용 리니어 왕복 액추에이터의 동특성 해석)

  • Jeong, S.S.;Yoon, I.K.;Jang, S.M.;Park, S.J.;Hong, Y.J.
    • Proceedings of the KIEE Conference
    • /
    • 2002.07b
    • /
    • pp.673-675
    • /
    • 2002
  • In this paper. the lumped electrical circuit approach of mass/spring system is used to model the mechanical aspects according to the frequency. Therefore, the mass/spring system can be dealt with here and linked with the equivalent circuit of electric linear oscillatory actuator(LOA). Analysis models are double-coil type linear compressor for stirling refrigerator. The compressor consists of the moving coil LOA, piston, and spring. The electro-mechanical system with mass and spring can be represented using the lumped electrical circuit. We present the system impedance and dynamics of moving coil linear compressor.

  • PDF

Adaptive Actuator Failure Compensation Designs for Linear Systems

  • Chen, Shuhao;Tao, Gang;Joshi, Suresh M.
    • International Journal of Control, Automation, and Systems
    • /
    • v.2 no.1
    • /
    • pp.1-14
    • /
    • 2004
  • This paper surveys some existing direct adaptive feedback control schemes for linear time-invariant systems with actuator failures characterized by the failure pattern that some inputs are stuck at some unknown fixed or varying values at unknown time instants, and applications of those schemes to aircraft flight control system models. Controller structures, plant-model matching conditions, and adaptive laws to update controller parameters are investigated for the following cases for continuous-time systems: state tracking using state feed-back, output tracking using state feedback, and output tracking using output feedback. In addition, a discrete-time output tracking design using output feedback is presented. Robustness of this design with respect to unmodeled dynamics and disturbances is addressed using a modified robust adaptive law.

Hysteresis Compensation Control of Piezoelectric Actuators (피에조일렉트릭 액츄에이터의 히스테리시스 보상 제어)

  • 임요안;최기흥;최기상
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.11a
    • /
    • pp.219-224
    • /
    • 1996
  • Piezoelectric actuators exhibit limited accuracy in tracking control due to their hysteresis nonlinearity. In this study a digital tracking control approach for a piezoelectric actuator based on incorporating a feedback linearization loop with a PID feedback controller is presented. The hysteresis nonlinearity of the piezoelectric actuator is modeled in the feedback compensation loop using the Maxwell slip model. Experiments were performed on a piezoelectric 2-axis linear positioner for tracking linearly decaying sinusoidal waveforms and circles. The experimental results show that the tracking control performance is noticeably improved by augmenting the feedback loop with a model of hysteresis in the feedback compensation loop.

  • PDF

Active vibration robust control for FGM beams with piezoelectric layers

  • Xu, Yalan;Li, Zhousu;Guo, Kongming
    • Structural Engineering and Mechanics
    • /
    • v.67 no.1
    • /
    • pp.33-43
    • /
    • 2018
  • The dynamic output-feedback robust control method based on linear matrix inequality (LMI) method is presented for suppressing vibration response of a functionally graded material (FGM) beam with piezoelectric actuator/sensor layers in this paper. Based on the reduced model obtained by using direct mode truncation, the linear fractional state space representation of a piezoelectric FGM beam with material properties varying through the thickness is developed by considering both the inherent uncertainties in constitution material properties as well as material distribution and the model error due to mode truncation. The dynamic output-feedback robust H-infinity control law is implemented to suppress the vibration response of the piezoelectric FGM beam and the LMI method is utilized to convert control problem into convex optimization problem for efficient computation. In numerical studies, the flexural vibration control of a cantilever piezoelectric FGM beam is considered to investigate the accuracy and efficiency of the proposed control method. Compared with the efficient linear quadratic regulator (LQR) widely employed in literatures, the proposed robust control method requires less control voltage applied to the piezoelectric actuator in the case of same control performance for the controlled closed-loop system.

The Study on Designing and Making Power Standing Wheelchair (파워 스탠딩 휠체어의 설계 및 제작에 관한 연구)

  • Jo, Jang-Hyen;Song, Yo-Chang
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.25 no.10
    • /
    • pp.92-98
    • /
    • 2008
  • This paper is concerned with the designing and making power standing wheelchair. This wheelchair is studied based on the mechanical and electrical engineering concepts and theories. The mechanical theories are composed of statics and dynamics knowledges that are related with moving and standing position. Basically the static and dynamic stability is the most important element in designing and making the real size model. The linear actuator is used in the standing mechanism and the joystick controlled by hand is attached on the arm rest. The real size model is made and also investigated through the design specifications by test drive. Finally, this paper proves the possibility of commerical production of power standing wheelchair.

Analysis of Operating Characteristics of PM-Type Magnetic Circuit Breaker

  • Jun, Hee-Deuk;Woo, Kyung-Il;Kwon, Byung-Il
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • v.3B no.2
    • /
    • pp.74-78
    • /
    • 2003
  • This paper describes the operating characteristic analysis of the PM-type linear oscillatory actuator used as a magnetic circuit breaker for the electromagnetic field, electric circuit, and mechanical motion problems. Transient calculations are based upon a 2D finite element magnetic field solution including non-linearity of materials. Changes of the dynamic characteristics from the eddy current in the plunger are quantified from finite element analysis. A new laminated model is proposed to decrease the eddy current effect.

Characteristics Analysis and Design of Transverse Flux Linear Actuator (횡축형 선형 엑츄에이터의 2D FEM에 의한 특성해석과 설계)

  • Lee, Ji-Young;Ha, Kyung-Ho;Hong, Jung-Pyo;Kang, Do-Hyun
    • Proceedings of the KIEE Conference
    • /
    • 2000.11b
    • /
    • pp.268-270
    • /
    • 2000
  • This paper deals with the design of transverse flux linear actuator based on the proposed design procedure. To satisfy requirement specifications, the initial model is designed by the equivalent magnet circuit and then the detailed design is achieved by Finite Element Method(FEM) using the equivalent reluctance 2D model. The effects of the design parameter on the static characteristics are investigated to increase the thrust.

  • PDF

Design a Small Form Factor Actuator using Inclined Motion Guides (경사형 모션 가이드를 이용한 초소형 액츄에이터)

  • Yang, Tae-Joon;Lee, Seung-Yop
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.136-139
    • /
    • 2006
  • In this paper we propose a small form factor actuator using an inclined motion guide for auto-focusing and zoom motions for mobile information devices. The novel structure using the inclined motion guide and a lens-supporting beam converts the circular motion by an ultrasonic motor into the linear motion of the optical lens. The proposed actuator has a simple structure to minimizing the mechanical tolerance, and the stroke is easy to modify by controlling the inclined angle. Experiments using a prototype verify the validity of the model as small form factor optical actuator.

  • PDF