• 제목/요약/키워드: Line-based SLAM

검색결과 18건 처리시간 0.023초

소실점 정보의 Loss 함수를 이용한 특징선 기반 SLAM (Line-Based SLAM Using Vanishing Point Measurements Loss Function)

  • 임현준;명현
    • 로봇학회논문지
    • /
    • 제18권3호
    • /
    • pp.330-336
    • /
    • 2023
  • In this paper, a novel line-based simultaneous localization and mapping (SLAM) using a loss function of vanishing point measurements is proposed. In general, the Huber norm is used as a loss function for point and line features in feature-based SLAM. The proposed loss function of vanishing point measurements is based on the unit sphere model. Because the point and line feature measurements define the reprojection error in the image plane as a residual, linear loss functions such as the Huber norm is used. However, the typical loss functions are not suitable for vanishing point measurements with unbounded problems. To tackle this problem, we propose a loss function for vanishing point measurements. The proposed loss function is based on unit sphere model. Finally, we prove the validity of the loss function for vanishing point through experiments on a public dataset.

이동로봇을 위한 Sonar Salient 형상과 선 형상을 이용한 EKF 기반의 SLAM (EKF-based SLAM Using Sonar Salient Feature and Line Feature for Mobile Robots)

  • 허영진;임종환;이세진
    • 한국정밀공학회지
    • /
    • 제28권10호
    • /
    • pp.1174-1180
    • /
    • 2011
  • Not all line or point features capable of being extracted by sonar sensors from cluttered home environments are useful for simultaneous localization and mapping (SLAM) due to their ambiguity because it is difficult to determine the correspondence of line or point features with previously registered feature. Confused line and point features in cluttered environments leads to poor SLAM performance. We introduce a sonar feature structure suitable for a cluttered environment and the extended Kalman filter (EKF)-based SLAM scheme. The reliable line feature is expressed by its end points and engaged togather in EKF SLAM to overcome the geometric limits and maintain the map consistency. Experimental results demonstrate the validity and robustness of the proposed method.

다중 채널 동적 객체 정보 추정을 통한 특징점 기반 Visual SLAM (A New Feature-Based Visual SLAM Using Multi-Channel Dynamic Object Estimation)

  • 박근형;조형기
    • 대한임베디드공학회논문지
    • /
    • 제19권1호
    • /
    • pp.65-71
    • /
    • 2024
  • An indirect visual SLAM takes raw image data and exploits geometric information such as key-points and line edges. Due to various environmental changes, SLAM performance may decrease. The main problem is caused by dynamic objects especially in highly crowded environments. In this paper, we propose a robust feature-based visual SLAM, building on ORB-SLAM, via multi-channel dynamic objects estimation. An optical flow and deep learning-based object detection algorithm each estimate different types of dynamic object information. Proposed method incorporates two dynamic object information and creates multi-channel dynamic masks. In this method, information on actually moving dynamic objects and potential dynamic objects can be obtained. Finally, dynamic objects included in the masks are removed in feature extraction part. As a results, proposed method can obtain more precise camera poses. The superiority of our ORB-SLAM was verified to compared with conventional ORB-SLAM by the experiment using KITTI odometry dataset.

실내 복도 환경에서 선분 특징점을 이용한 비전 기반의 지도 작성 및 위치 인식 (SLAM with Visually Salient Line Features in Indoor Hallway Environments)

  • 안수용;강정관;이래경;오세영
    • 제어로봇시스템학회논문지
    • /
    • 제16권1호
    • /
    • pp.40-47
    • /
    • 2010
  • This paper presents a simultaneous localization and mapping (SLAM) of an indoor hallway environment using Rao-Blackwellized particle filter (RBPF) along with a line segment as a landmark. Based on the fact that fluent line features can be extracted around the ceiling and side walls of hallway using vision sensor, a horizontal line segment is extracted from an edge image using Hough transform and is also tracked continuously by an optical flow method. A successive observation of a line segment gives initial state of the line in 3D space. For data association, registered feature and observed feature are matched in image space through a degree of overlap, an orientation of line, and a distance between two lines. Experiments show that a compact environmental map can be constructed with small number of horizontal line features in real-time.

누적 센서 데이터 갱신을 이용한 아크/라인 세그먼트 기반 SLAM (Arc/Line Segments-based SLAM by Updating Accumulated Sensor Data)

  • 염서군;최윤성;무경;한창수
    • 제어로봇시스템학회논문지
    • /
    • 제21권10호
    • /
    • pp.936-943
    • /
    • 2015
  • This paper presents arc/line segments-based Simultaneous Localization and Mapping (SLAM) by updating accumulated laser sensor data with a mobile robot moving in an unknown environment. For each scan, the sensor data in the set are stored by a small constant number of parameters that can recover the necessary information contained in the raw data of the group. The arc and line segments are then extracted according to different limit values, but based on the same parameters. If two segments, whether they are homogenous features or not, from two scans are matched successfully, the new segment is extracted from the union set with combined data information obtained by means of summing the equivalent parameters of these two sets, not combining the features directly. The covariance matrixes of the segments are also updated and calculated synchronously employing the same parameters. The experiment results obtained in an irregular indoor environment show the good performance of the proposed method.

천장 조명의 위치와 방위 정보를 이용한 모노카메라와 오도메트리 정보 기반의 SLAM (Monocular Vision and Odometry-Based SLAM Using Position and Orientation of Ceiling Lamps)

  • 황서연;송재복
    • 제어로봇시스템학회논문지
    • /
    • 제17권2호
    • /
    • pp.164-170
    • /
    • 2011
  • This paper proposes a novel monocular vision-based SLAM (Simultaneous Localization and Mapping) method using both position and orientation information of ceiling lamps. Conventional approaches used corner or line features as landmarks in their SLAM algorithms, but these methods were often unable to achieve stable navigation due to a lack of reliable visual features on the ceiling. Since lamp features are usually placed some distances from each other in indoor environments, they can be robustly detected and used as reliable landmarks. We used both the position and orientation of a lamp feature to accurately estimate the robot pose. Its orientation is obtained by calculating the principal axis from the pixel distribution of the lamp area. Both corner and lamp features are used as landmarks in the EKF (Extended Kalman Filter) to increase the stability of the SLAM process. Experimental results show that the proposed scheme works successfully in various indoor environments.

특징점과 특징선을 활용한 단안 카메라 SLAM에서의 지도 병합 방법 (Map Alignment Method in Monocular SLAM based on Point-Line Feature)

  • 백무현;이진규;문지원;황성수
    • 한국멀티미디어학회논문지
    • /
    • 제23권2호
    • /
    • pp.127-134
    • /
    • 2020
  • In this paper, we propose a map alignment method for maps generated by point-line monocular SLAM. In the proposed method, the information of feature lines as well as feature points extracted from multiple maps are fused into a single map. To this end, the proposed method first searches for similar areas between maps via Bag-of-Words-based image matching. Thereafter, it calculates the similarity transformation between the maps in the corresponding areas to align the maps. Finally, we merge the overlapped information of multiple maps into a single map by removing duplicate information from similar areas. Experimental results show that maps created by different users are combined into a single map, and the accuracy of the fused map is similar with the one generated by a single user. We expect that the proposed method can be utilized for fast imagery map generation.