• Title/Summary/Keyword: Line tunneling

Search Result 45, Processing Time 0.033 seconds

Design and Construction Case of Urban Tunnel in Alluvial Soil (충적토사지반에서의 도심터널 설계 및 시공)

  • Chang, Seok-Bue;Huh, Do-Hak;Moon, Sang-Jo;Kim, Do-Su
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.09a
    • /
    • pp.829-834
    • /
    • 2009
  • Alluvial soil is one of the most difficult grounds for tunneling works due to the insufficient ground strength and excessive ground water inflow. Dduk island in Seoul has a wide alluvium developed by two rivers, Han and Jung-Ryang. Subway tunnel of $\bigcirc\bigcirc$ line planed across Dduk island has highly poor ground conditions due to small cover and deeply developed alluvium. Moreover, much part of this tunnel is located parallel to the bridge foundations of another railway with a small horizontal distance. Original design was done in 2002 and construction has been in progress. During the construction, tunnel design has been partly changed and adjusted for the complex ground condition and the demand from related organizations. This paper intend to introduce the urban tunnel design and construction in alluvial soils. This line could be divided three sections(A, B, C) according to ground and adjacent conditions. Section A is featured by mixed tunnel faces consisted with alluvial soils and weathered or weak rocks. The feature of section B is that tunnel underpasses near the bridge foundations of another subway. Lastly, section C with a very short length is the most difficult construction conditions due to the small cover, poor ground, obstacles on and underneath ground surface.

  • PDF

Structural Stability Analysis Study for Existing Subway Tunnels Using a 3D Stress-Pore Pressure Coupled Finite Element Modelling of NATM Tunneling (NATM 터널굴착시 응력-간극수압 연계 3차원 유한요소모델링을 통한 기존 지하철터널의 구조적 안정성 해석연구)

  • Kong, Byung-Seung
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.13 no.6 s.58
    • /
    • pp.192-203
    • /
    • 2009
  • In the new Seoul-Busan high speed railroad construction specially in area of city center passage the roadbed establishment is recommended the staibility for the existing subway tunnel segments of Busan subway 1st and 2nd lines regarding the appearance condition, a quality condition and the durability of the objective facility, and it evaluates the numerical analysis using MIDAS/GTS which leads the stability of the objective facility and investigatesd tunnels. Fundamental issues in tunneling under high groundwater table are discussed and the effect of groundwater on tunnel excavation was examined using a 3D stress-pore pressure coupled Finite-Element Method. Based on the results the interaction mechanism between the tunnelling and groundwater is identified. In the both of 1st and 2nd Line the maximum sinkage, unequal sinkage and the lining stress from numerical analysis are within permission and the damage degree is appearing to be disregarded. But it enforces necessary Pre-grouting in order to minimize an actual tunnel face conduct and when the tunnel is excavated it is also necessary to minimize the outflow possibility.

Field test and numerical study of the effect of shield tail-grouting parameters on surface settlement

  • Shao, Xiaokang;Yang, Zhiyong;Jiang, Yusheng;Yang, Xing;Qi, Weiqiang
    • Geomechanics and Engineering
    • /
    • v.29 no.5
    • /
    • pp.509-522
    • /
    • 2022
  • Tail-grouting is an effective measure in shield engineering for filling the gap at the shield tail to reduce ground deformation. However, the gap-filling ratio affects the value of the gap parameters, leading to different surface settlements. It is impossible to adjust the fill ratio indiscriminately to study its effect, because the allowable adjustment range of the grouting quantity is limited to ensure construction site safety. In this study, taking the shield tunnel section between Chaoyanggang Station and Shilihe Station of Beijing Metro Line 17 as an example, the correlation between the tail-grouting parameter and the surface settlement is investigated and the optimal grouting quantity is evaluated. This site is suitable for conducting field tests to reduce the tail-grouting quantity of shield tunneling over a large range. In addition, the shield tunneling under different grouting parameters was simulated. Furthermore, we analyzed the evolution law of the surface settlement under different grouting parameters and obtained the difference in the settlement parameters for each construction stage. The results obtained indicate that the characteristics of the grout affect the development of the surface settlement. Therefore, reducing the setting time or increasing the initial strength of the grout could effectively suppress the development of surface subsidence. As the fill ratio decreases, the loose zone of the soil above the tunnel expands, and the soil deformation is easily transmitted to the surface. Meanwhile, owing to insufficient grout support, the lateral pressure on the tunnel segments is significantly reduced, and the segment moves considerably after being removed from the shield tail.

Development of Total Station for In-line Measuring of Curved Course in Micro-Tunneling (곡선경로를 가지는 마이크로 터널링 굴진경로의 자동측량을 위한 토탈스테이션의 개발)

  • 이진이;전종우;남장현
    • Proceedings of the IEEK Conference
    • /
    • 2003.07c
    • /
    • pp.2541-2544
    • /
    • 2003
  • 새로운 원리에 의한 원격 거리 및 각도측정 시스템[1][2](이하 TS, Total Station)을 개발하였다. 본 시스템은 마이크로 터널링 공법의 굴진기의 후미 또는 임의의 기준점에 원격으로 점멸할 수 있는 십자형의 발광체를 부착하고, 추진관에 고정시킨 상하좌우 각도측정 및 비접촉식 레이저 거리측정기가 부착된 무인 원격 제어장치에 의하여 십자형 발광체의 중심을 자동으로 검출한다. 또한. 회전각과 CCD 라인 스캔 센서의 조합에 의하여 각도를 정밀하게 원격 측정하게 된다. 한편 본 시스템을 이용하면 마이크로 터널링 공법에 의한 추진관내의 측정 가능한 범위를 연결하는 위치에 복수의 TS를 배치하여 서로의 위치를 자동으로 계측하고 그들 데이터를 컴퓨터에 의하여 계산함으로써, 맨홀의 임의의 기준점으로부터 굴진기의 현재 좌표를 신속하고 정확하게 계산할 수 있다.

  • PDF

A Study on the Ground Movement around Tunnel Reinforced by Umbralla Arch Method (Umbrella Arch 공법에 의한 터널 천단부 보강시 주변 지반의 거동에 관한 연구)

  • 배규진;김창용;문홍득;훙성완
    • Tunnel and Underground Space
    • /
    • v.7 no.4
    • /
    • pp.299-309
    • /
    • 1997
  • Soil and rock improvement and reinforcement techniques are applied to achieve safe tunnel excavation in difficult geological conditions. The Umbrella Arch Method(UAM), one of the auxiliary techniques, is used to reduce ground permeability and improve stabtility of the tunnel by inserting a series of steel pipes into ground around the crown inclined to the longitudinal axis of the tunnel. Additionally, multi-step grouting is added through the steel pipes. UAM combines the advantages of a modern forepoling system with the grouting injection method. This technique has been applied in subway, road and utility tunneling sites for the last few years in Korea. This paper presents the results of analysis of the case studies on ground movements associated with UAM used in the Seoul Subway line 5 constructon site. Improvement of tunnel stability and decrease of ground settlement expected with pipe insertion are also discussed. Finally, the method to minimize ground settlements caused by NATM tunnelling are suggested.

  • PDF

Regularized Neural Network Training Algorithm Using Line Search Tunneling and It's Application to Option Pricing (선형탐색 터널링을 이용한 정규화 신경망 학습 알고리즘과 옵션가격결정에의 응용)

  • Kim, Bo-Hyeon;Jeong, Gyu-Hwan;Choe, Hyeong-Jun;Lee, Jae-Uk
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 2005.05a
    • /
    • pp.746-752
    • /
    • 2005
  • 본 논문에서는 다층 퍼셉트론 신경망 학습을 위한 새로운 두 단계 학습방법을 제안하고 이를 옵션 가격결정 모형에 응용하였다. 제안된 신경망 학습 알고리즘의 첫번째 단계는 Levenberg-Marquardt 알고리즘을 이용하여 빠르게 국소최적해를 찾는 것이고 두 번째 단계는 첫 번째 단계에서 찾은 국소최적해가 원하는 수준에 미치지 못할 경우 선형탐색 터널링을 이용해서 더 나은 해를 찾는 것이다. 이 두 단계를 반복적으로 수행함으로써 연결가중치 공간에서 구하고자 하는 해를 빠르고 안정적으로 찾을 수 있다. 현재 옵션가격결정 모형으로 많이 이용되고 있는 Black-Scholes 모형의 문제점을 극복하기 위해서 제안된 신경망 모형을 옵션가격결정 문제에 사용하였다. 이 모형을 KOSPI200 옵션 데이터로 실험한 결과 Black-Scholes 모형에 비해 검증오차를 60% 가량 줄일 수 있었다.

  • PDF

A Case Study for the Support Pattern Appropriateness in Rock Tunneling Designs (지하철 설계시의 지보형식 적정성에 관한 연구)

  • 김수정;장태우
    • The Journal of Engineering Geology
    • /
    • v.5 no.2
    • /
    • pp.167-179
    • /
    • 1995
  • The only three elements such as RQD, N -value and Es were used as a quantitative standard for the design of supporr pattern determidetion on subway line 8th in Seoul. Because the support pattern that was obtained by these elements could not he determined on the basis of the quantitative of geology and the orientations and properties of discontinuity planes, there have been some problems in determining the economic support pattern and tunnel stability. Therefore, in an attempt to determine the stable and economic support pattern with more quantitative elements, more flerrible rock mass classification with geologic conditions was performed by using RMR at 1745 sections and Q-system at 374 sections within Seongnam block on subway line 8th. Then, rusults by these two methods were compared with standard support pattern of the subway line 8th. Moreover, relationships between geology, geologic structures and topography to rock mass grades were studied. According to the rusult of this study, it is judged that the standard support pattern designed with PD-4 or PS - 4 should have been subdivided into 4~6 support patterns. Some sections where geologic structures such as faults and joints are developed tend to have rock mass grades. And they also have low rock mass grades near valley. On thr other hand, they show intermediate grades at piedmont area and the greatest ones at high mountains.

  • PDF

The Write Characteristics of SONOS NOR-Type Flash Memory with Common Source Line (공통 소스라인을 갖는 SONOS NOR 플래시 메모리의 쓰기 특성)

  • An, Ho-Myoung;Han, Tae-Hyeon;Kim, Joo-Yeon;Kim, Byung-Cheul;Kim, Tae-Geun;Seo, Kwang-Yell
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.11a
    • /
    • pp.35-38
    • /
    • 2002
  • In this paper, the characteristics of channel hot electron (CHE) injection for the write operation in a NOR-type SONOS flash memory with common source line were investigated. The thicknesses of he tunnel oxide, the memory nitride, and the blocking oxide layers for the gate insulator of the fabricated SONOS devices were $34{\AA}$, $73{\AA}$, and $34{\AA}$, respectively. The SONOS devices compared to floating gate devices have many advantages, which are a simpler cell structure, compatibility with conventional logic CMOS process and a superior scalability. For these reasons, the introduction of SONOS device has stimulated. In the conventional SONOS devices, Modified Folwer-Nordheim (MFN) tunneling and CHE injection for writing require high voltages, which are typically in the range of 9 V to 15 V. However CHE injection in our devices was achieved with the single power supply of 5 V. To demonstrate CHE injection, substrate current (Isub) and one-shot programming curve were investigated. The memory window of about 3.2 V and the write speed of $100{\mu}s$ were obtained. Also, the disturbance and drain turn-on leakage during CHE injection were not affected in the SONOS array. These results show that CHE injection can be achieved with a low voltage and single power supply, and applied for the high speed program of the SONOS memory devices.

  • PDF

Evaluation of geological conditions and clogging of tunneling using machine learning

  • Bai, Xue-Dong;Cheng, Wen-Chieh;Ong, Dominic E.L.;Li, Ge
    • Geomechanics and Engineering
    • /
    • v.25 no.1
    • /
    • pp.59-73
    • /
    • 2021
  • There frequently exists inadequacy regarding the number of boreholes installed along tunnel alignment. While geophysical imaging techniques are available for pre-tunnelling geological characterization, they aim to detect specific object (e.g., water body and karst cave). There remains great motivation for the industry to develop a real-time identification technology relating complex geological conditions with the existing tunnelling parameters. This study explores the potential for the use of machine learning-based data driven approaches to identify the change in geology during tunnel excavation. Further, the feasibility for machine learning-based anomaly detection approaches to detect the development of clayey clogging is also assessed. The results of an application of the machine learning-based approaches to Xi'an Metro line 4 are presented in this paper where two tunnels buried in the water-rich sandy soils at depths of 12-14 m are excavated using a 6.288 m diameter EPB shield machine. A reasonable agreement with the measurements verifies their applicability towards widening the application horizon of machine learning-based approaches.

Flow characteristics after water inrush from the working face in karst tunneling

  • Wu, J.;Li, S.C.;Xu, Z.H.;Pan, D.D.;He, S.J.
    • Geomechanics and Engineering
    • /
    • v.14 no.5
    • /
    • pp.407-419
    • /
    • 2018
  • In order to investigate flow characteristics after water inrush from the working face in process of karst tunnel construction, numerical calculation for two class case studies of water inrush is carried out by using the FLUENT software on the background of Qiyueshan tunnel. For each class water inrush from the tunnel face, five cases under different water-inrush velocity are simulated and researched. Three probing lines are selected respectively in the left tunnel, cross passage, right tunnel and in the height direction of the tunnel centerline. The variation characteristics of velocity and pressure on each probing line under the five water-inrush velocities are analyzed. As for the selected four groups probing lines in the tunnels, the change rules of velocity and pressure on each group probing lines under the same water-inrush velocity are discussed. Finally, the water flow characteristics after inrush from the tunnel face are summarized by comparing the case studies. The results indicate that: (1) The velocity and pressure change greatly at the intersection area of the cross passage and the tunnels. (2) The velocity nearby the tunnel side wall is the minimum, while it is the maximum in the middle position. (3) The pressure value of every cross section in the tunnels is basically fixed. (4) As water-inrush velocity increases, the flow velocity and pressure in the tunnels also increase. The former is approximately proportional to their respective water-inrush velocity, while the latter is not. The research results provide a theoretical basis for making scientific and rational escape routes.