• Title/Summary/Keyword: Line regression model

Search Result 185, Processing Time 0.038 seconds

Noise Correction of Remote Sensing Imageries: Application to KOMPSAT/OSMI Data

  • Kang, Y.Q.;Ahn, Y.H.
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.694-696
    • /
    • 2003
  • The KOMPSAT/OSMI remote sending data of 800 km swath are collected by whisk broom method employing 96 charge coupled devices (CCDs). The stripping noise in the OSMI imageries, which arise mainly due to the non-uniform sensitivities of 96 CCDs, are the major hindrance for oceanographic applications of the OSMI data. The OSMI images are corrected by 'Ensemble Smoothness' method which is based on an assumption that the series of the averages and variances of digital numbers in each line should vary smoothly. The data of each line are corrected by linear regression model of which coefficients are obtained by Ensemble Smoothness method. Our algorithm can be applied not only to OSMI data but also for other remote sensing date collected by whisk broom or push broom.

  • PDF

Optimum Design Criteria for Maximum Torque Density & Minimum Current Density of a Line-Start Permanent-Magnet Motor using Response Surface Methodology & Finite Element Method (반응표면법과 유한요소법을 이용한 라인-스타트 영구 자석 전동기의 최대토크밀도와 최소전류밀도을 위한 최적설계)

  • Jang, Soon-Myung;Jun, Myung-Jin;Lee, Jung-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.1055-1056
    • /
    • 2011
  • This paper deals with optimum design criteria for maximum torque density & minimum current density of a single phase line-start permanent-magnet motor (LSPMM) using RSM (Response Surface Methodology) & FEM (Finite Element Method). The focus of this paper is to find a design solution through the comparison of torque density and minimum current density resulting from rotor shape variations. And then, a central composite design (CCD) mixed resolution is introduced, and analysis of variance (ANOVA) is conducted to determine the significance of the fitted regression model.

  • PDF

Spikelet Number Estimation Model Using Nitrogen Nutrition Status and Biomass at Panicle Initiation and Heading Stage of Rice

  • Cui, Ri-Xian;Lee, Lee-Byun-Woo
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.47 no.5
    • /
    • pp.390-394
    • /
    • 2002
  • Spikelet number per unit area(SPN) is a major determinant of rice yield. Nitrogen nutrition status and biomass during reproductive stage determine the SPN. To formulate a model for estimating SPN, the 93 field experiment data collected from widely different regions with different japonica varieties in Korea and Japan were analyzed for the upper boundary lines of SPN responses to nitrogen nutrition index(NNI), shoot dry weight and shoot nitrogen content at panicle initiation and heading stage. The boundary lines of SPN showed asymptotic responses to all the above parameters(X) and were well fitted to the exponential function of $f(X)=alphacdot{1-etacdotexp(gamma;cdot;X)}$. Excluding the constant, from the boundary line equation, the values of the equation range from 0 to 1 and represent the indices of parameters expressing the degree of influence on SPN. In addition to those indices, the index of shoot dry weight increase during reproductive stage was calculated by directly dividing the shoot dry weight increase by the maximum value ($800 extrm{g/m}^{-2}$) of dry weight increase as it showed linear relationship with SPN. Four indices selected by forward stepwise regression at the stay level of 0.05 were those for NNI ($I_{NNI}_P$) at panicle initiation, NNI($I_{NNI}_h$) and shoot dry weight($I_{DW}_h$) at heading stage, and dry weight increase($I_{DW}$) between those two stages. The following model was obtained: SPN=48683ㆍ $I_{DWH}$$^{0.482}$$I_{NNIp}$$^{0.387}$$I_{NNIH}$$^{0.318}$$I_{DW}$ $^{0.35}$). This model accounted for about 89% of the variation of spikelet number. In conclusion this model could be used for estimating the spikelet number of japonica rice with some confidence in widely different regions and thus, integrated into a rice growth model as a component model for spikelet number estimation.n.n.

Algorithm on Detection and Measurement for Proximity Object based on the LiDAR Sensor (LiDAR 센서기반 근접물체 탐지계측 알고리즘)

  • Jeong, Jong-teak;Choi, Jo-cheon
    • Journal of Advanced Navigation Technology
    • /
    • v.24 no.3
    • /
    • pp.192-197
    • /
    • 2020
  • Recently, the technologies related to autonomous drive has studying the goal for safe operation and prevent accidents of vehicles. There is radar and camera technologies has used to detect obstacles in these autonomous vehicle research. Now a day, the method for using LiDAR sensor has considering to detect nearby objects and accurately measure the separation distance in the autonomous navigation. It is calculates the distance by recognizing the time differences between the reflected beams and it allows precise distance measurements. But it also has the disadvantage that the recognition rate of object in the atmospheric environment can be reduced. In this paper, point cloud data by triangular functions and Line Regression model are used to implement measurement algorithm, that has improved detecting objects in real time and reduce the error of measuring separation distances based on improved reliability of raw data from LiDAR sensor. It has verified that the range of object detection errors can be improved by using the Python imaging library.

Statistical Estimate and Prediction Values with Reference to Chronological Change of Body Height and Weight in Korean Youth (한국인 청소년 신장과 체중의 시대적 변천에 따른 통계학적 추정치에 관한 연구)

  • 강동석;성웅현;윤태영;최중명;박순영
    • Korean Journal of Health Education and Promotion
    • /
    • v.13 no.2
    • /
    • pp.130-166
    • /
    • 1996
  • As compared with body height and body weight by ages and sexes, by means of the data reported under other researchers from 1967 to 1994 for 33 years, this study obtained the estimate value of body height and body weight by ages and sexes for the same period, and figured out prediction value of body height and body weight in the ages of between 6 and 14 from 1995 to 2000. These surveys and measurements took for one year from October 1st 1994 to September 30th. As shown in the 〈Table 1〉, in order to calculate the establishment, estimate value and prediction value of the chronological regression model of body height and body weight, by well-grounded 17 representative research papers, this research statistically tested propriety of liner regression model by the residual analysis in advance of being reconciled to simple liner regression model by the autonomous variable-year and the subordinate variable-body weight and measured prediction value, theoretical value from 1962 to 1994 by means of 2nd or 3rd polynomial regression model, with this redult did prediction value from 1995 to 2000. 1. Chronological Change of Body Height and Body Weight The analysis result from regression model of the chronological body height and body weight for the aged 6 - 16 in both sexes ranging from 1962 to 1994, corned from the 〈Table 2-20〉. On the one hand, the measurement value of respective researchers had a bit changes by ages with age growing, but the other hand, theoretical value, prediction value showed the regular increase by the stages and all values indicated a straight line on growth and development with age growing. That is, in case of the aged 6, males had 109.93cm in 1962 and females 108.93cm, but we found the increase that males had 1I8.0cm, females 1I3.9cm. In theoretical value, prediction value, males showed the increase from 109.88cm to 1I7.89cm and females from 109.27cm to 1I5.64cm respectively. There was the same inclination toward all ages. 2. Comparision to Measurement Value and Prediction Value of Body Height and Body Weight in 1994 As shown in the 〈Table 21〉, in case of body height, measurement value and prediction value of body height and body weight by ages and sexes almost showed the similiar inclination and poor grade, in case of body weight, prediction value in males had a bit low value by all ages, and prediction value in females had a high value in adolescence, to the contrary, a low value in adult. 3. Prediction Value of Body Height and Body Weight from 1995 to 2000 This research showed that body height and body weight remarkably increased in adolescence but slowly in adult. This study represented that Korean physique was on the increase and must be measured continually hereafter.

  • PDF

Color Correction Using Polynomial Regression in Film Scanner (다항회귀를 이용한 필름 스캐너에서의 색보정)

  • 김태현;백중환
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.40 no.1
    • /
    • pp.43-50
    • /
    • 2003
  • Today, the demand of image acquisition systems grows as the multimedia applications go on increasing greatly. Among the systems, film scanner is one of the systems, which can acquire high quality and high resolution images. However due to the nonlinear characteristic of the light source and sensor, colors of the original film image do not correspond to the colors of the scanned image. Therefore color correction mr the scanned digital image is essential in the film scanner. In this paper, polynomial regression method is applied for the color correction to CIE $L^{*}$ $a^{*}$ $b^{*}$ color model data converted from RGB color model data. A1so a film scanner hardware with 12 bit color resolution for each R, G, B and 2400 dpi was implemented by using TMS320C32 DSP chip and high resolution line sensor. An experimental result shows that the average color difference ($\Delta$ $E^{*}$$_{ab}$ ) is reduced from13.48 to 8.46.6.6.6.6.

Genetic Aspects of Persistency of Milk Yield in Boutsico Dairy Sheep

  • Kominakis, A.P.;Rogdakis, E.;Koutsotolis, K.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.15 no.3
    • /
    • pp.315-320
    • /
    • 2002
  • Test-day records (n=13677) sampled from 896 ewes in 5-9 (${\mu}$=7.5) monthly test-days were used to estimate genetic and phenotypic parameters of test-day yields, lactation milk yield (TMY), length of the milking period (DAYS) and three measures of persistency of milk yield in Boutsico dairy sheep. Τhe measures of persistency were the slope of the regression line (${\beta}$), the coefficient of variation (CV) of the test-day milk yields and the maximum to average daily milk yield ratio (MA). The estimates of variance components were obtained under a linear mixed model by restricted maximum likelihood. The heritability of test-day yields ranged from 0.15 to 0.24. DAYS were found to be heritable ($h^2$=0.11). Heritability estimates of ${\beta}$, CV and MA were 0.15, 0.13, 0.10, respectively. Selection for maximum lactation yields is expected to result in prolonged milking periods, high rates of decline of yields after peak production, variable test-day yields and higher litter sizes. Selection for flatter lactation curves would reduce lactation yields, increase slightly the length of the milking period and decrease yield variation as well as litter size. The most accurate prediction of TMY was obtained with a linear regression model with the first five test-day records.

Analysis beef consumption using SUR

  • Cha, Ye Bon;Rho, Ho Young;Hwang, Joon Byeong;Jeon, Sang Gon
    • Korean Journal of Agricultural Science
    • /
    • v.47 no.2
    • /
    • pp.291-303
    • /
    • 2020
  • This various factors that affect beef consumption behavior between different types of beef such as Hanwoo, Australian, American, and domestic Yukwoo. Previous studies usually used almost ideal demand system (AIDS) model to show the degree of substitution between meats especially domestic and foreign beef. This a real expenditure each individual and to explain what factors affect consumers especially focusing on various beef. Hence, previous studies used shares and prices as key variableshowever, this study use various socio-demographic variables, consumption tendency, satisfaction and importance for beef consumption, purchasing usage and part, etc. This study a seemingly unrelated regression (SUR) model to enhance efficiency of estimates because error terms of four beef consumption equations are correlated. For, an on-line survey was performed Aug. 5 - 14, and we obtained 979 effective samples. The results show that high income group (more than 700 mil. won per month) purchases more beef than other groups. The origin of orders is Hanwoo, Yukwoo, Australian beef, and American beef. A family who member purchases more Yukwoo than other groups. foreign affects beef consumption regardless of its origin. Individuals who think origin and taste prefer Hanwoo. However, individuals who think price prefer Australian beef.

Differentiation of Beef and Fish Meals in Animal Feeds Using Chemometric Analytic Models

  • Yang, Chun-Chieh;Garrido-Novell, Cristobal;Perez-Marin, Dolores;Guerrero-Ginel, Jose E.;Garrido-Varo, Ana;Cho, Hyunjeong;Kim, Moon S.
    • Journal of Biosystems Engineering
    • /
    • v.40 no.2
    • /
    • pp.153-158
    • /
    • 2015
  • Purpose: The research presented in this paper applied the chemometric analysis to the near-infrared spectral data from line-scanned hyperspectral images of beef and fish meals in animal feeds. The chemometric statistical models were developed to distinguish beef meals from fish ones. Methods: The meal samples of 40 fish meals and 15 beef meals were line-scanned to obtain hyperspectral images. The spectral data were retrieved from each of 3600 pixels in the Region of Interest (ROI) of every sample image. The wavebands spanning 969 nm to 1551 nm (across 176 spectral bands) were selected for chemometric analysis. The partial least squares regression (PLSR) and the principal component analysis (PCA) methods of the chemometric analysis were applied to the model development. The purpose of the models was to correctly classify as many beef pixels as possible while misclassified fish pixels in an acceptable amount. Results: The results showed that the success classification rates were 97.9% for beef samples and 99.4% for fish samples by the PLSR model, and 85.1% for beef samples and 88.2% for fish samples by the PCA model. Conclusion: The chemometric analysis-based PLSR and PCA models for the hyperspectral image analysis could differentiate beef meals from fish ones in animal feeds.

Prediction of compressive strength of bacteria incorporated geopolymer concrete by using ANN and MARS

  • X., John Britto;Muthuraj, M.P.
    • Structural Engineering and Mechanics
    • /
    • v.70 no.6
    • /
    • pp.671-681
    • /
    • 2019
  • This paper examines the applicability of artificial neural network (ANN) and multivariate adaptive regression splines (MARS) to predict the compressive strength of bacteria incorporated geopolymer concrete (GPC). The mix is composed of new bacterial strain, manufactured sand, ground granulated blast furnace slag, silica fume, metakaolin and fly ash. The concentration of sodium hydroxide (NaOH) is maintained at 8 Molar, sodium silicate ($Na_2SiO_3$) to NaOH weight ratio is 2.33 and the alkaline liquid to binder ratio of 0.35 and ambient curing temperature ($28^{\circ}C$) is maintained for all the mixtures. In ANN, back-propagation training technique was employed for updating the weights of each layer based on the error in the network output. Levenberg-Marquardt algorithm was used for feed-forward back-propagation. MARS model was developed by establishing a relationship between a set of predictors and dependent variables. MARS is based on a divide and conquers strategy partitioning the training data sets into separate regions; each gets its own regression line. Six models based on ANN and MARS were developed to predict the compressive strength of bacteria incorporated GPC for 1, 3, 7, 28, 56 and 90 days. About 70% of the total 84 data sets obtained from experiments were used for development of the models and remaining 30% data was utilized for testing. From the study, it is observed that the predicted values from the models are found to be in good agreement with the corresponding experimental values and the developed models are robust and reliable.