• Title/Summary/Keyword: Line Sensors

Search Result 620, Processing Time 0.028 seconds

Evaluation of Wear Efficiency and Subjective Wear Sensation According to the Structures of Smart Clothing for the Measurement of Vital Sign (생체신호측정용 스마트 의복의 구조에 따른 착용효율성 및 주관적 착용감 평가)

  • Lee, Hyun-Young
    • Korean Journal of Human Ecology
    • /
    • v.15 no.6
    • /
    • pp.1037-1047
    • /
    • 2006
  • In this paper, various structures of the healthcare smart clothing for real-time measurement of vital sign were suggested. The wearing efficiency was evaluated to find out the best ergonomic clothing in the suggested design. The supplementary effects of the clothing components (princess line, double fabric, cushion) on the stable and tight positioning of sensors to the body were evaluated with wear test. Five experimental clothing for male subject were made with closely-fitted shape and they included two representative structure: one was the integrated type of inner and outer garments and the other was the separated type with two garments. Eight subjects in their twenties were participated in the wear test to evaluate the wearing efficiency of experimental clothing. As results, the clothing structure of the separated garments with the inner and the outer shells were evaluated as more efficient and comfortable. However, the effects of clothing components on the light positioning of the sensors to the body surface were not differentiated each other in the subjective evaluation.

  • PDF

Compensation of Thermal Errors for the CNC Machine Tools (II) - Analysis of Error Compensation Algorithm for the PC-NC Controller - (CNC 공작기계의 열변형 오차 보정 (II) - PC-NC제어기용 오차보정 알고리즘 분석 -)

  • 이재종;최대봉;박현구
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2001.10a
    • /
    • pp.214-219
    • /
    • 2001
  • One of the major limitations of productivity and quality in metal cutting is the machining accuracy of machine tools. The machining accuracy is affected by geometric errors, thermally-induced errors, and the deterioration of the machine tools. Geometric and thermal errors of machine tools should be measured and compensated to manufacture high quality products. In metal cutting, the machining accuracy is more affected by thermal errors than by geometric errors. In this study, the compensation device and temperature-based algorithm have been presented in order to compensate thermal error of machine tools under the real-time. The thermal error is modeled by means of angularity errors of a column and thermal drift error of the spindle unit which are measured by the touch probe unit with a star type styluses, a designed spherical ball artifact, and five gap sensors. In order to compensate thermal characteristics under several operating conditions, experiments performed with five gap sensors and manufactured compensation device on the horizontal machining center.

  • PDF

Acoustic Emission Source Location and Material Characterization Evaluation of Fiberboards (목재 섬유판의 음향방출 위치표정과 재료 특성 평가)

  • Ro Sing-Nam;Park Ik-Keum;Sen Seong-Won;Kim Yong-Kwon
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.14 no.3
    • /
    • pp.96-102
    • /
    • 2005
  • Acoustic Emission(AE) technique has been applied to not only material characterization evaluation but also on-line monitoring of the structural integrity. The AE source location technique is very important to identify the source, such as crack, leak detection. Since the AE waveforms obtained from sensors are very difficult to distinguish the defect signals, therefore, it is necessary to consider the signal analysis of the transient wave-form. In this study, we have divided the region of interest into a set finite elements, and calculated the arrival time differences between sensors by using the velocities at every degree from 0 to 90. A new technique for the source location of acoustic emission in fiberboard plates has been studied by introducing Wavelet Transform(WT) do-noising technique. WT is a powerful tool for processing transient signals with temporally varying spectra. If the WT de-noising was employed, we could successfully filter out the errors of source location in fiberboard plates by arrival time difference method. The accuracy of source location appeared to be significantly improved.

Development of MEMS Accelerometer-based Smart Sensor for Machine Condition Monitoring (MEMS 가속도계 기반 기계 상태감시용 스마트센서 개발)

  • Son, Jong-Duk;Yang, Bo-Suk
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.05a
    • /
    • pp.448-452
    • /
    • 2007
  • Many industrial operations require continuous or nearly-continuous operation of machines, which if interrupted can result in significant financial loss. The condition monitoring of these machines has received considerable attention recent years. Rapid developments in semiconductor, computing, and communication with a remote site have led to a new generation of sensor called "smart" sensors which are capable of wireless communication with a remote site. The purpose of this research is the development of smart sensor using which can on-line perform condition monitoring. This system is addressed to detect conditions that may lead to equipment failure when it is running. Moreover it will reduce condition monitoring expense using low cost MEMS accelerometer. This sensor can receive data in real-time or periodic time from MEMS accelerometer. Furthermore, this system is capable for signal preprocessing task (High Pass Filter, Low Pass Filter and Gain Amplifier) and analog to digital converter (A/D) which is controlled by CPU. A/D converter that converts 10bit digital data is used. This sensor communicates with a remote site PC using TCP/IP protocols. Wireless LAN contain IEEE 802.11i-PSK or WPA (PSK, TKIP) encryption. Developed sensor executes performance tests for data acquisition accuracy estimations.

  • PDF

A Development of Healthcare Monitoring System Based on Internet of Things Effective

  • KIM, Song-Eun;MUN, Ji-Hui;KIM, Kyoung-Sook;KANG, Min-Soo
    • Korean Journal of Artificial Intelligence
    • /
    • v.8 no.1
    • /
    • pp.1-6
    • /
    • 2020
  • The Recently there has been a growing interest in health care due to the COVID-19 situation. In this paper, we intend to develop a healthcare monitoring system to provide users with smart healthcare systems in line with the healthcare 3.0 era. The system consists of a wireless network between various sensors, Android smartphones, and OLEDs using Bluetooth, and through this, a health care monitoring system capable of collecting user's biometric information and managing health by receiving data values of sensors connected to Arduino. In conclusion, the user's BPM value was calculated using the heart rate sensor, and the exercise intensity can be adjusted through this. In addition, a step derivation algorithm is implemented using an acceleration sensor, and calorie consumption can be measured using the step and weight values. As such, the heart rate, step count, calorie consumption data can be transmitted to a smartphone application through a Bluetooth module and output, and can be output to an OLED for users who are not easy to access the smartphone. This healthcare monitoring system can be applied to various groups and technologies.

A Fast Algorithm for Korean Text Extraction and Segmentation from Subway Signboard Images Utilizing Smartphone Sensors

  • Milevskiy, Igor;Ha, Jin-Young
    • Journal of Computing Science and Engineering
    • /
    • v.5 no.3
    • /
    • pp.161-166
    • /
    • 2011
  • We present a fast algorithm for Korean text extraction and segmentation from subway signboards using smart phone sensors in order to minimize computational time and memory usage. The algorithm can be used as preprocessing steps for optical character recognition (OCR): binarization, text location, and segmentation. An image of a signboard captured by smart phone camera while holding smart phone by an arbitrary angle is rotated by the detected angle, as if the image was taken by holding a smart phone horizontally. Binarization is only performed once on the subset of connected components instead of the whole image area, resulting in a large reduction in computational time. Text location is guided by user's marker-line placed over the region of interest in binarized image via smart phone touch screen. Then, text segmentation utilizes the data of connected components received in the binarization step, and cuts the string into individual images for designated characters. The resulting data could be used as OCR input, hence solving the most difficult part of OCR on text area included in natural scene images. The experimental results showed that the binarization algorithm of our method is 3.5 and 3.7 times faster than Niblack and Sauvola adaptive-thresholding algorithms, respectively. In addition, our method achieved better quality than other methods.

Experimental Study on the On-line Monitoring of Offshore Structures Using Acoustic Emission Technology (음향방출법을 이용한 해양구조물의 온라인 감시에 관한 실험적 연구)

  • Won, Soon-Ho;Cho, Kyung-Shik
    • Journal of Ocean Engineering and Technology
    • /
    • v.13 no.3B
    • /
    • pp.73-82
    • /
    • 1999
  • In this research, an experimental study is presented to check the possibilities of offshore structures monitoring using AE techniques. The underwater transducer and preamplifier are fabricated. And, it is proved that this unit can be used for the detection of AE in offshore structures. Wave propagation studies have shown that supplementary attenuations due to seawater are significantly reducing the detection range of the sensors. It excludes the possibility of offshore structures monitoring with a small number of sensors. We conclude that AE waves would be correctly detected for a path of about 3m. Tubular joints have been tested in air and underwater using simulated elastic wave. Ability of AE techniques to detect and locate cracks early in their evolution has been demonstrated. Several parameters of AE generation have been set in evidence. It has also been shown that crack development goes with an increase of AE parameter. Conclusively, it is shown that AE techniques can provide practical alternatives to present methods being used for inspection of deep-water offshore structures undergoing structural degradation due to fatigue crack growth.

  • PDF

Development of MEMS Accelerometer-based Smart Sensor for Machine Condition Monitoring (MEMS 가속도계 기반의 기계 상태감시용 스마트센서 개발)

  • Son, Jong-Duk;Shim, Min-Chan;Yang, Bo-Suk
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.18 no.8
    • /
    • pp.872-878
    • /
    • 2008
  • Many industrial operations require continuous or nearly-continuous operation of machines, interruption of which can result in significant cost loss. The condition monitoring of these machines has received considerable attentions in recent years. Rapid developments in semiconductor, computing, and communication with a remote site have led to a new generation of sensor called "smart" sensors which are capable of wireless communication with a remote site. The purpose of this research is to develop a new type of smart sensor for on-line condition monitoring. This system is addressed to detect conditions that may lead to equipment failure when it is running. Moreover it will reduce condition monitoring expense using low cost MEMS accelerometer. This system is capable for signal preprocessing task and analog to digital converter which is controlled by CPU. This sensor communicates with a remote site PC using TCP/IP protocols. The developed sensor executes performance tests for data acquisition accuracy estimations.

A Comparate Study for the PD Pattern Analysis using Different Type of Sensors Applicable to the On-line Monitoring of GIS (GIS 감시진단용 다양한 센서를 적용한 PD 검출 및 패턴분석 결과 비교연구)

  • Koo Ja-Yoon;Chang Yong-Moo;Choi Jae-Ok;Yeon Man-seung;Lee Ji-Chul
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.54 no.5
    • /
    • pp.198-205
    • /
    • 2005
  • Many precedent investigations hate been made for the reliable assessment of the insulation state of large power apparatus for which partial discharge detection is one of tile plausible way. In this work, experimental investigations have been carried out to make the comparison on the PD(partial discharge) pattern analysis related to the five different types of artificial defects such as SFMP (Single Free Moving Particle), MFMP (Multi Free Moving Particle), Void, CFP (Conductor-Fixed Protrusion), EP (Enclosure Protrusion). For each PD pattern, PD detection has been done by tee different types of PD sensors such as HFCT(High Frequency Current Transformer), AE(Acoustic Emission) and UHF(Ultra High Frequency). And, in addition, frequency spectrum by the UHF sensor has been also made for each defect respectively. As a result, it is observed that the possibility of obtaining PD pattern based on PRPD(Phase Resolved Partial Discharge) in connection with the defects tinder investigation is dependant on the type of the sensor while the spectrum analysis is always successful to be achieved for every defect. Therefore, it could be suggested that the nature of PD source can be identified more distinctively when the conventional PRPDA is combined with spectrum analysis.

Development of a Photopolymer-based Flexible Tactile Sensor using Layered Fabrication and Direct Writing (적층조형과 직접주사방식을 결합한 광경화성 수지 기반의 신축성 촉각센서의 제작)

  • Woo, Sang Gu;Lee, In Hwan;Kim, Ho-Chan;Lee, Kyung Chang;Cho, Hae-Yong
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.13 no.2
    • /
    • pp.8-14
    • /
    • 2014
  • Many kinds of robots and machines have been developed to replace human laborin industrial and medical fields, as well as domestic life. In these applications, the device sneed to obtain environmental data using diverse sensors. Among such sensors, the tactile sensor is important because of its ability to get information regarding surface texture and force through the use of mechanical contact. In this research, a simple tactile sensor was developed using the direct writing of pressure sensitive material and layered fabrication of photocurable material. The body of the sensor was fabricated using layered fabrication, and pressure sensitive materials were dispensed between the layers using direct writing. We examined the line fabrication characteristics of the pressure sensitive material according to nozzle dispensing conditions. A simple $4{\times}4$ array flexible tactile sensor was successfully fabricated using the proposed process.