• Title/Summary/Keyword: Line: identification

Search Result 758, Processing Time 0.031 seconds

Development of Moving Force Identification Algorithm Using Moment Influence Lines at Multiple-Axes and Density Estimation Function (다축모멘트 영향선과 밀도추정함수를 사용한 이동하중식별 알고리듬의 개발)

  • Jeong, Ji-Weon;Shin, Soobong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.10 no.6
    • /
    • pp.87-94
    • /
    • 2006
  • Estimating moving vehicle loads is important in modeling design loads for bridge design and construction. The paper proposes a moving force identification algorithm using moment influence lines measured at multi-axes. Density estimation function was applied to estimate more than two wheel loads when estimated load values fluctuated severely. The algorithm has been examined through simulation studies on a simple-span plate-girder bridge. Influences of measurement noise and error in velocity on the identification results were investigated in the simulation study. Also, laboratory experiments were carried out to examine the algorithm. The load identification capability was dependent on the type and speed of moving loads, but the developed algorithm could identify loads within 10% error in maximum.

Identification of Novel Clubroot Resistance Loci in Brassic rapa

  • Pang, Wenxing;Chen, Jingjing;Yu, Sha;Shen, Xiangqun;Zhang, Chunyu;Piao, Zhongyun
    • 한국균학회소식:학술대회논문집
    • /
    • 2015.05a
    • /
    • pp.42-42
    • /
    • 2015
  • Plasmodiophora brassicae, the causal agent of clubroot disease, does the most serious damage to the Brassica crops. The limited control approaches make that the identification of clubroot resistance (CR) is more important for developing CR cultivars of the Brassica crops. So far, 8 CR loci were mapped. However, the variation of P. brassicae leads to the rapid erosion of its resistance. To identify novel CR genes, we employed three mapping population, derived from crosses between Chinese cabbage and turnip inbred lines ($59-1{\times}ECD04$ and $BJN3-1{\times}Siloga$) or between Chinese cabbage inbred lines ($BJN3-1{\times}85-I-II$), to perform QTL analysis. Totally, 8 CR loci were indentified and showed race-specific resistance. Physical mapping of these 8 loci suggested that 4 were located previously mapped position, indicating they might be the same allele or different alleles of the same genes. Other 4 loci were found to be novel. Further, CR near isogenic line carrying each CR locus was developed based on the marker assisted selection. Verification of these CR loci was underway. Identification of these novel CR genes would facilitate to breed broad-spectrum and durable CR cultivars of B. rapa by pyramiding strategies.

  • PDF

Seismic damage estimation through measurable dynamic characteristics

  • Lakshmanan, N.;Raghuprasad, B.K.;Muthumani, K.;Gopalakrishnan, N.;Sreekala, R.
    • Computers and Concrete
    • /
    • v.4 no.3
    • /
    • pp.167-186
    • /
    • 2007
  • Ductility based design of reinforced concrete structures implicitly assumes certain damage under the action of a design basis earthquake. The damage undergone by a structure needs to be quantified, so as to assess the post-seismic reparability and functionality of the structure. The paper presents an analytical method of quantification and location of seismic damage, through system identification methods. It may be noted that soft ground storied buildings are the major casualties in any earthquake and hence the example structure is a soft or weak first storied one, whose seismic response and temporal variation of damage are computed using a non-linear dynamic analysis program (IDARC) and compared with a normal structure. Time period based damage identification model is used and suitably calibrated with classic damage models. Regenerated stiffness of the three degrees of freedom model (for the three storied frame) is used to locate the damage, both on-line as well as after the seismic event. Multi resolution analysis using wavelets is also used for localized damage identification for soft storey columns.

A Study on the Development of Information Systems for Digital Contents Based on Standard Digital Identifier(SDI) (식별체계기반 디지털콘텐츠 유통체제 구축방안 연구)

  • Seok, Jung-Ho
    • Journal of the Korean Society for information Management
    • /
    • v.20 no.4 s.50
    • /
    • pp.195-210
    • /
    • 2003
  • With the rapid development of information technology and internet in these days, resources of knowledge information have been digitalized and distributed on the internet, However, the location of digital content and a change of content have generated problems for users access and services. In line with this regard, the research on the identification of digital content utilizing standardized identification system and distribution system is necessary. This study intends to contribute to the implementation of information system based on standard digital identifier for the effective management and safe distribution of digital contents. This study first tries to survey SDI outline, practical application case and distributed business model and to analyze information distribution status Finally, this study tries to draw up a plan for the establishment of KISTI's SDI. content identification system, content distribution system.

New Echo Canceller using Adaptive Cascaded System Identification Algorithm (적응 다단 시스템 식별 알고리듬을 이용한 새로운 반향제거기)

  • Kwon, Oh Sang
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.10 no.1
    • /
    • pp.113-120
    • /
    • 2014
  • In this paper, I present a new echo canceller using the adaptive cascade system identification (CSI) method, which a system response is divided into several responses so that each response is adaptively estimated and combined. Echo cancellation is required for a dual-duplex DSL, in order to allow each individual loop to operate in a full duplex fashion. Echo cancellation was one of the most difficult aspects of DSL design, requiring high linearity and total echo return loss in excess of 70 dB. Especially, for a fickle response, if the response is estimated by an adaptive filter, the filter needs more taps and the performance is decreased. But the response is divided into several responses, the computation complexities are decreased and the performance is increased. For the stage constant n, which represents the number of stages, if the response is not divided (n=1), the computation complexity of multiply is $2N^2$. And if the response is divided into two responses (n=2), the computation complexity of multiply is $2N^2$. Also, if n=3, the computation complexity is ${\frac{2}{3}}N^2$. Therefore, it is known that the computation complexity is decreased as n is increased. Finally, this proposed method is verified through simulation of echo canceller for digital subscriber line (DSL) application.

Identification and Control of Command Panoramic Sight System (조준경안정화시스템의 인식과 제어)

  • Kim, Dae-Woon;Cheon, Soon-Yong
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.44 no.3
    • /
    • pp.14-21
    • /
    • 2007
  • Sight Stabilization system is the control system to preserve Line of Sight for the targets though many nonlinear disturbances and vibrations are generated. In this paper, we identified Stabilization system using RLS algorithm, one of the system identification algorithm and found out the modeling of system. Considering nonlinear operational condition this paper proposes two Knowledge-base controllers - Fuzzy controller, Fuzzy PI Gain Scheduling controller, and simulates the performances of proposed controllers compare with Lead PI controller being used in Sight system of NFIV.

Improved Kalman filter with unknown inputs based on data fusion of partial acceleration and displacement measurements

  • Liu, Lijun;Zhu, Jiajia;Su, Ying;Lei, Ying
    • Smart Structures and Systems
    • /
    • v.17 no.6
    • /
    • pp.903-915
    • /
    • 2016
  • The classical Kalman filter (KF) provides a practical and efficient state estimation approach for structural identification and vibration control. However, the classical KF approach is applicable only when external inputs are assumed known. Over the years, some approaches based on Kalman filter with unknown inputs (KF-UI) have been presented. However, these approaches based solely on acceleration measurements are inherently unstable which leads poor tracking and so-called drifts in the estimated unknown inputs and structural displacement in the presence of measurement noises. Either on-line regularization schemes or post signal processing is required to treat the drifts in the identification results, which prohibits the real-time identification of joint structural state and unknown inputs. In this paper, it is aimed to extend the classical KF approach to circumvent the above limitation for real time joint estimation of structural states and the unknown inputs. Based on the scheme of the classical KF, analytical recursive solutions of an improved Kalman filter with unknown excitations (KF-UI) are derived and presented. Moreover, data fusion of partially measured displacement and acceleration responses is used to prevent in real time the so-called drifts in the estimated structural state vector and unknown external inputs. The effectiveness and performance of the proposed approach are demonstrated by some numerical examples.

An Approach for Identifying the Temperature of Inductance Motors by Estimating the Rotor Slot Harmonic Based on Model Predictive Control

  • Wang, Liguo;Jiang, Qingyue;Zhang, Chaoyu;Jin, Dongxin;Deng, Hui
    • Journal of Power Electronics
    • /
    • v.17 no.3
    • /
    • pp.695-703
    • /
    • 2017
  • In order to satisfy the urgent requirements for the overheating protection of induction motors, an approach that can be used to identify motor temperature has been proposed based on the rotor slots harmonic (RSH) in this paper. One method to accomplish this is to improve the calculation efficiency of the RSH by predicting the stator winding distribution harmonic order by analyzing the harmonics spectrum. Another approach is to increase the identification accuracy of the RSH by suppressing the influence of voltage flashes or current surges during temperature estimation based on model predictive control (MPC). First, an analytical expression of the stator inductance is extracted from a steady-state positive sequence motor equivalent circuit model developed from the rotor flux field orientation. Then a procedure that applies MPC for reducing the identification error of the rotor temperature caused by voltage sag or swell of the power system is given. Due to this work, the efficiency and accuracy of the RSH have been significantly improved and validated our experiments. This work can serves as a reference for the on-line temperature monitoring and overheating protection of an induction motor.

Analysis of Phosphatidylinositol 3,4,5-Trisphosphates of PTEN Expression on Mammalian Cells

  • Jahan, Nusrat;Park, Taeseong;Kim, Young Hwan;Lee, Dongsun;Kim, Hackyoung;Noh, Kwangmo;Kim, Young Jun
    • Mass Spectrometry Letters
    • /
    • v.4 no.3
    • /
    • pp.41-46
    • /
    • 2013
  • The goal of this study is to find an experimental condition which enables us to perform enzymatic studies on the cellular behavior of PTEN (phosphatase and tensine homolog) through identification of molecular species of phosphatidylinositol 3,4,5-trisphosphates and their quantitative analysis in a mammalian cell line using mass spectrometry. We initially exployed a two-step extraction process using HCl for extraction of phosphatidylinositol 3,4,5-trisphosphates from two mammalian cell lines and further analyzed the extracted phosphatidylinositol 3,4,5-trisphosphates using tandem mass spectrometry for the identification of them. We finally quantified the concentration of phosphatidylinositol 3,4,5-trisphosphates using internal standard calibration. From these observation, we found that HEK 293-T cells is a good model to examine the enzymatic behavior of PTEN in a cell, and the minimum amount of phosphatidylinositol 3,4,5-trisphosphates is more than 50 pmol for quantification in a mass spectrometer. These results suggest that the well-optimized experimental conditions are required for the investigation of the cellular PTEN in terms of the catalytic mechanism and further for the detailed identification of cellular substrates.

A novel recursive stochastic subspace identification algorithm with its application in long-term structural health monitoring of office buildings

  • Wu, Wen-Hwa;Jhou, Jhe-Wei;Chen, Chien-Chou;Lai, Gwolong
    • Smart Structures and Systems
    • /
    • v.24 no.4
    • /
    • pp.459-474
    • /
    • 2019
  • This study develops a novel recursive algorithm to significantly enhance the computation efficiency of a recently proposed stochastic subspace identification (SSI) methodology based on an alternative stabilization diagram. Exemplified by the measurements taken from the two investigated office buildings, it is first demonstrated that merely one sixth of computation time and one fifth of computer memory are required with the new recursive algorithm. Such a progress would enable the realization of on-line and almost real-time monitoring for these two steel framed structures. This recursive SSI algorithm is further applied to analyze 20 months of monitoring data and comprehensively assess the environmental effects. It is certified that the root-mean-square (RMS) response can be utilized as an excellent index to represent most of the environmental effects and its variation strongly correlates with that of the modal frequency. More detailed examination by comparing the monthly correlation coefficient discloses that larger variations in modal frequency induced by greater RMS responses would typically lead to a higher correlation.