• Title/Summary/Keyword: Limosilactobacillus fermentum

Search Result 7, Processing Time 0.023 seconds

Complete genome sequence of Limosilactobacillus fermentum JNU532 as a probiotic candidate for the functional food and feed supplements

  • Bogun Kim;Ziayo Meng;Xiaoyue Xu;Seungwoo Baek;Duleepa Pathiraja;In-Geol Choi;Sejong Oh
    • Journal of Animal Science and Technology
    • /
    • v.65 no.1
    • /
    • pp.271-274
    • /
    • 2023
  • Lactic acid bacteria (LAB) have been reported to possess various beneficial properties and are commonly used as probiotics. LAB play a crucial role in milk fermentation, industrial lactic acid fermentation, and health and medicine. Limosilactobacillus fermentum isolated from fermented dairy and food products is considered as 'Generally Recognized as Safe' by FDA. Limosilactobacillus fermentum plays an important role in modulation of the intestinal microbiota, enhancing the host immune system and improving feed digestibility. We isolated a probiotic candidate that was identified and named Limosilactobacillus fermentum JNU532. In a previous report, cell-free culture of L. fermentum JNU532 exhibited anti-melanogenic and antioxidant activities. In this study, we present the complete genome assembly of the bacterial strain JNU532. The final genome consists of one circular chromosome (2,077,416 base pairs) with a guanine + cytosine (GC) ratio of 51.5%.

Genome analysis of Limosilactobacillus fermentum JN2019 applied to tumeric fermentation for animal feed

  • Yoo, Heeseop;Yong, Cheng Chung;Oh, Sejong
    • Journal of Animal Science and Technology
    • /
    • v.63 no.5
    • /
    • pp.1204-1206
    • /
    • 2021
  • Limosilactobacillus fermentum JN2019, formerly named Lactobacillus fermentum JN2019, was isolated from kimchi. Its genome was completely sequenced using the PacBio RSII sequencing system to explore beneficial phenotypes. In a previous study, L. fermentum JN2019 was used to ferment the by-product of tumeric for use in livestock feed. The 2.3 Mb genome had a high guanine (G) + cytosine (C) content of 50.6% and a 30 kb plasmid. The data will inform the comprehensive understanding of JN2019 and provide insights for potential applications.

Antioxidant and Antimelanogenic Activities of Kimchi-Derived Limosilactobacillus fermentum JNU532 in B16F10 Melanoma Cells

  • Meng, Ziyao;Oh, Sejong
    • Journal of Microbiology and Biotechnology
    • /
    • v.31 no.7
    • /
    • pp.990-998
    • /
    • 2021
  • Melanin is a natural skin pigment produced by specialized cells called melanocytes via a multistage biochemical pathway known as melanogenesis, involving the oxidation and polymerization of tyrosine. Melanogenesis is initiated upon exposure to ultraviolet (UV) radiation, causing the skin to darken, which protects skin cells from UVB radiation damage. However, the abnormal accumulation of melanin may lead to the development of certain skin diseases, including skin cancer. In this study, the antioxidant and antimelanogenic activities of the cell-free supernatant (CFS) of twenty strains were evaluated. Based on the results of 60% 2,2-diphenyl-1-picrylhydrazyl scavenging activity, 21% 2,2'-azino-bis (3-ethylbenzthiazoline-6-sulfonic acid) scavenging capacity, and a 50% ascorbic acid equivalent ferric reducing antioxidant power value, Limosilactobacillus fermentum JNU532 was selected as the strain with the highest antioxidant potential. No cytotoxicity was observed in cells treated with the CFS of L. fermentum JNU532. Tyrosinase activity was reduced by 16.7% in CFS-treated B16F10 cells (but not in the cell-free system), with >23.2% reduction in melanin content upon treatment with the L. fermentum JNU532-derived CFS. The inhibitory effect of the L. fermentum JNU532-derived CFS on B16F10 cell melanogenesis pathways was investigated using quantitative reverse transcription polymerase chain reaction and western blotting. The inhibitory effects of the L. fermentum JNU532-derived CFS were mediated by inhibiting the transcription of TYR, TRP-1, TRP-2, and MITF and the protein expression of TYR, TRP-1, TRP-2, and MITF. Therefore, L. fermentum JNU532 may be considered a potentially useful, natural depigmentation agent.

Isolation, Characterization, and Comparative Genomics of the Novel Potential Probiotics from Canine Feces

  • Ngamlak Foongsawat;Sirinthorn Sunthornthummas;Kwannan Nantavisai;Komwit Surachat;Achariya Rangsiruji;Siriruk Sarawaneeyaruk;Kedvadee Insian;Sirapan Sukontasing;Nuttika Suwannasai;Onanong Pringsulaka
    • Food Science of Animal Resources
    • /
    • v.43 no.4
    • /
    • pp.685-702
    • /
    • 2023
  • Lactic acid bacteria (LAB) are commonly used as probiotics; however, not all LAB strains have the same beneficial effects. To successfully use LAB as probiotics in canines, LAB species should originate from the canine intestinal tract as they display host specificity. The objective of this study was to investigate the phenotypic and genomic traits of potential probiotic LAB isolated from canine fecal samples. Twenty LAB samples were evaluated for their potential probiotic characteristics including resistance to low pH, bile salts, hydrophobicity, auto-aggregation, co-aggregation, adhesion to epithelia or mucosa, and production of inhibitory compounds. Additionally, we evaluated their safety and other beneficial effects on canine health, such as DPPH free radical scavenging, and β-galactosidase. Four strains demonstrated potential probiotic characteristics and were selected: Enterococcus hirae Pom4, Limosilactobacillus fermentum Pom5, Pediococcus pentosaceus Chi8, and Ligilactobacillus animalis FB2. Safety evaluations showed that all strains lacked hemolytic activity, could not produce biogenic amines, and did not carry any pathogenic genes. In addition, L. fermentum Pom5 and P. pentosaceus Chi8 displayed susceptibility to all antibiotics and concordant with the absence of antibiotic resistance genes. Based on their phenotypic and genomic characteristics, L. fermentum Pom5 and P. pentosaceus Chi8 were identified as potential probiotic candidates for canines.

Multilayer Coating with Red Ginseng Dietary Fiber Improves Intestinal Adhesion and Proliferation of Probiotics in Human Intestinal Epithelial Models

  • Ye Seul Son;Mijin Kwon;Naeun Son;Sang-Kyu Kim;Mi-Young Son
    • Journal of Microbiology and Biotechnology
    • /
    • v.33 no.10
    • /
    • pp.1309-1316
    • /
    • 2023
  • To exert their beneficial effects, it is essential for the commensal bacteria of probiotic supplements to be sufficiently protected as they pass through the low pH environment of the stomach, and effectively colonize the intestinal epithelium downstream. Here, we investigated the effect of a multilayer coating containing red ginseng dietary fiber, on the acid tolerance, and the adhesion and proliferation capacities of three Lactobacillus strains (Limosilactobacillus reuteri KGC1901, Lacticaseibacillus casei KGC1201, Limosilactobacillus fermentum KGC1601) isolated from Panax ginseng, using HT-29 cells, mucin-coated plates, and human pluripotent stem cell-derived intestinal epithelial cells as in vitro models of human gut physiology. We observed that the multilayer-coated strains displayed improved survival rates after passage through gastric juice, as well as high adhesion and proliferation capacities within the various gut epithelial systems tested, compared to their uncoated counterparts. Our findings demonstrated that the multilayer coat effectively protected commensal microbiota and led to improved adhesion and colonization of intestinal epithelial cells, and consequently to higher probiotic efficacy.

Immunostimulatory Effect of Heat-Killed Probiotics on RAW264.7 Macrophages

  • Noh, Hye-Ji;Park, Jung Min;Kwon, Yoo Jin;Kim, Kyunghwan;Park, Sung Yurb;Kim, Insu;Lim, Jong Hyun;Kim, Byoung Kook;Kim, Byung-Yong
    • Journal of Microbiology and Biotechnology
    • /
    • v.32 no.5
    • /
    • pp.638-644
    • /
    • 2022
  • Probiotics modulate the gut microbiota, which in turn regulate immune responses to maintain balanced immune homeostasis in the host. However, it is unclear how probiotic bacteria regulate immune responses. In this study we investigated the immunomodulatory effects of heat-killed probiotics, including Lactiplantibacillus plantarum KC3 (LP3), Lactiplantibacillus plantarum CKDB008 (LP8), and Limosilactobacillus fermentum SRK414 (LF4), via phagocytosis, nitric oxide (NO), and pro-inflammatory cytokine production in macrophages. We thus found that heat-killed LP8 could promote the clearance of foreign pathogens by enhancing the phagocytosis of macrophages. Treatment with heat-killed LP8 induced the production of NO and pro-inflammatory cytokines, including TNF-α, IL-6, and IL-1β. In addition, heat-killed LP8 suppressed the production of NO and cytokines in LPS-induced RAW264.7 cells, suggesting that heat-killed LP8 exerts immunomodulatory effects depending on the host condition. In sum, these results indicate that heat-killed LP8 possesses the potential for immune modulation while providing a molecular basis for the development of functional probiotics prepared from inactivated bacterial cells.

Characterization of Cholesterol Lowering Lactic Acid Bacteria Isolated from Palm Wine and Maize Beer and Assessment of Their Use in the Production of Probiotic Papaya Juice

  • Bertrand Tatsinkou Fossi;Dickson Ebwelle Ekabe;Liliane Laure Toukam Tatsinkou;Rene Bilingwe Ayiseh;Frederic Tavea;Pierre Michel Jazet
    • Microbiology and Biotechnology Letters
    • /
    • v.51 no.2
    • /
    • pp.191-202
    • /
    • 2023
  • Elevated serum cholesterol is a main risk factor for heart disorders. Most probiotic products administered to lower cholesterol are dairy products which are not suitable for lactose-intolerant individuals. In this study, we assessed the cholesterol-lowering efficacy of LAB isolated from traditionally fermented drinks in diet-induced rats and determine their efficacy in the production of non-dairy, probiotic formulations using papaya juice. LAB were isolated from palm wine and corn beer on MRS agar using a pour-plate technique. Identification was carried out using 16S rRNA gene sequencing. A hypercholesterolemia model in which diet-induced Wistar albino rats were assigned into four groups was established. Oral gavage was carried out for 30 days. On the 31st day, the rats were dissected and the serum lipid profile was analyzed using biochemical kits. A 106 cfu/ml of a 24-h-old culture of selected lactobacilli was used to inoculate papaya juice and incubated at 37℃. Microbial and chemical changes were assessed during papaya fermentation and after four weeks of cold storage. Two selected isolates (Pw1 and Cb4) had in vitro cholesterol reduction of > 80%. These two isolates lowered lipid profile (triglyceride, total cholesterol, LDL-c) significantly, and increased HDL-c levels (p < 0.5) in the rat sera. Phylogenetic analysis showed that Pw1 was 98.86% similar to Limosilactobacillus fermentum, while Cb4 was 99.54% similar to Enteroccocus faecium. Both strains fermented papaya juice with cell viability reaching 8.92 × 108 cfu/ml and 25.3 × 108 cfu/ml respectively, and were still viable after 4 weeks of cold storage.