• 제목/요약/키워드: Limit state analysis

검색결과 646건 처리시간 0.026초

스테인리스 각형강관기둥의 최대내력 (The Maximum Strength of Stainless Steel Rectangular Hollow Section Columns and Beam-Columns)

  • 이명재;김희동
    • 한국강구조학회 논문집
    • /
    • 제17권1호통권74호
    • /
    • pp.73-82
    • /
    • 2005
  • 본 논문은 스테인리스강이 건축구조용으로 이용될 때 중심압축재와 기둥의 최대내력을 수치해석으로 조사한 것이다. STS304의 소재인장시험결과로부터 응력-변형도 관계를 모델화하여 최대내력에 미치는 영향을 조사하였으며 강구조 한계상태설계기준식과의 비교를 시도하였다. 스테인리스강을 건축구조용으로 사용하기 위해서는 별도의 설계기준식이 필요하다는 점이 확인되었다.

A Study on the Ultimate Strength Behaviour of Stiffened Plate according to the Stiffener Section

  • Ko Jae-Yogn;Park Joo-Shin;Park Sung-Hyeon
    • 해양환경안전학회:학술대회논문집
    • /
    • 해양환경안전학회 2004년도 춘계학술발표회
    • /
    • pp.113-119
    • /
    • 2004
  • A steel plated is typically composed of plate panels. The overall failure of the structure is certainly affected and can be governed by the bulking and plastic collapse of these individual members In the ultimate limit state design. therefore. a primary task is to accurately calculate the budding and plastic collapse strength of such structural members. Structural elements making up steel palated structures do not work separately. resulting in high degree of redundancy and complexity in contrast to those of steel framed structures. To enable the behavior of such structures to be analyzed, simplifications or idealizations must essentially be made considering the accuracy need and degree of complexity of the analysis to be used Generally the more complex the analysis the greater is the accuracy that may be obtained. The aim of this study is the investigation of the effect of the tripping behaviour including section characteristic for a plate under uniaxial compression.

  • PDF

2경간 연속교의 과재하중 해석방법에 관한 연구 (A Study on the Analysis of Overload of a Two-Span Continuous Bridige)

  • 한상철
    • 한국안전학회지
    • /
    • 제8권1호
    • /
    • pp.47-53
    • /
    • 1993
  • Residual Deformation Analysis(RDA) is a new method for ratings of the continuous bridges. The RDA makes it possible to expand the inelastic steel girder bridge design method set forth in the American Association of State Highway Officals'(AASHTO) Guide Specifications for Alternate Load Factor Design Procedures for Steel Beam Bridges Using Braced Compact Sections(1986) into an inelastic rating method. It is a method to assess the residual moments and deformations that are set up in a beam that has been loaded into the post-elastic range This method combines classical elastic conjugate beam theory with linear moment-rotation relationships for midspan inelastic positive moment. The limit state is inelastic serviceability limit. which is defined as the ratio of the span to midspan inelastic deflection(C=L/D).

  • PDF

Reliability analysis of tunnels with consideration of the earthquakes extreme events

  • Azadi, Mohammad;Ghasemi, S. Hooman;Mohammadi, Mohammadreza
    • Geomechanics and Engineering
    • /
    • 제22권5호
    • /
    • pp.433-439
    • /
    • 2020
  • Tunnels are one of the most important constructions in civil engineering. The damage to these structures caused enormous costs. Therefore, the safe and economic design of these structures has long been considered. However, both applied loads on the tunnels as well as the resistance of the structural members are naturally uncertain parameters, hence, the design of these structures requires considering the probabilistic approaches. This study aims to determine the load and resistant factors of lining tunnels concerning the earthquake extreme events limit state function. For this purpose, tunnels that have been designed according to the previous design codes (AASHTO Tunnel LRFD 2017) and using reliability analysis, the optimum reliability of these structures for different loading scenarios is determined. In this paper, the tunnel is considered circular. Finally, the proper load and resistance factors are calculated corresponding to the obtained target reliability. Based on the performed calibration earthquake extreme events limit state function, the result of this study can be recommended to AASHTO Tunnel LRFD 2017.

해상풍력 파일 굴착직경 결정을 위한 하부구조물 설계해석 (Design Analysis of Substructure for Offshore Wind Pile Excavation)

  • 이기옥;선민영
    • 한국기계가공학회지
    • /
    • 제18권4호
    • /
    • pp.48-55
    • /
    • 2019
  • With recent rapid increases in the power generation capacity of offshore wind power generators, reliable structural analysis of the large-scale infrastructure needed to install wind power generators at sea is required. Therefore, technology for heavy marine equipment such as barges and excavation equipment is needed. Under submarine conditions, rock drilling technology to install the substructure for offshore wind pile excavation is a very important factor in supporting a wind farm safely under dynamic loads over periods of at least 20 years. After investigating the marine environment and on-site ground excavation for the Saemangeum offshore wind farm, in this study we suggest.

Role of accidental torsion in seismic reliability assessment for steel buildings

  • Chang, Heui-Yung;Lin, Chu-Chieh Jay;Lin, Ker-Chun;Chen, Jung-Yu
    • Steel and Composite Structures
    • /
    • 제9권5호
    • /
    • pp.457-471
    • /
    • 2009
  • This study investigates the role of accidental torsion in seismic reliability assessment. The analyzed structures are regular 6-story and 20-story steel office buildings. The eccentricity in a floor plan was simulated by shifting the mass from the centroid by 5% of the dimension normal to earthquake shaking. The eccentricity along building heights was replicated by Latin hypercube sampling. The fragilities for immediate occupancy and life safety were evaluated using 0.7% and 2.5% inter-story drift limits. Two limit-state probabilities and the corresponding earthquake intensities were compared. The effect of ignoring accidental torsion and the use of code accidental eccentricity were also assessed. The results show that accidental torsion may influence differently the structural reliability and limit-state PGAs. In terms of structural reliability, significant differences in the probability of failure are obtained depending on whether accidental torsion is considered or not. In terms of limit-state PGAs, accidental torsion does not have a significant effect. In detail, ignoring accidental torsion leads to underestimates in low-rise buildings and at small drift limits. On the other hand, the use of code accidental eccentricity gives conservative estimates, especially in high-rise buildings at small drift limits.

Reliability of structures with tuned mass dampers under wind-induced motion: a serviceability consideration

  • Pozos-Estrada, A.;Hong, H.P.;Galsworthy, J.K.
    • Wind and Structures
    • /
    • 제14권2호
    • /
    • pp.113-131
    • /
    • 2011
  • Excessive wind-induced motion in tall buildings can cause discomfort, affect health, and disrupt the daily activities of the occupants of a building. Dynamic vibration absorbers such as the tuned mass dampers (TMDs) can be used to reduce the wind-induced motion below a specified tolerable serviceability limit state (SLS) criterion. This study investigates whether the same probability of not exceeding specified wind-induced motion levels can be achieved by torsionally sensitive structures without/with linear/nonlinear TMDs subjected to partially correlated wind forces, if they are designed to just meet the same SLS criterion. For the analyses, different structures and the uncertainty in the response, wind load and perception of motion is considered. Numerical results indicate that for structures that are designed or retrofitted without or with optimum linear TMDs and satisfying the same SLS criterion, their probability of exceeding the considered criterion is very consistent, if the inherent correlation between the wind forces is considered in design. However, this consistency deteriorates if nonlinear TMDs are employed. Furthermore, if the correlation is ignored in the design, in many cases a slightly unconservative design, as compared to the designed by considering correlation, is achieved.

펄트루젼 I형 단면 압축재의 국부좌굴계수 계산을 위한 근사식의 개발 (An Approximate Solution for the Local Buckling Coefficient of Pultruded I-Shape Compression Members)

  • 주형중;정재호;이승식;윤순종
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2004년도 춘계학술발표대회 논문집
    • /
    • pp.223-227
    • /
    • 2004
  • The pultruded structural shapes are usually composed of thin-walled plate elements. Because the composite material has relatively low elastic moduli, the design of pultruded compression members may not be governed by the material strength limit state but by the stability limit state such as the local buckling or the global buckling. Therefore, the stability limit state must be checked to design pultruded columns. In this research, the local buckling analysis of pultruded I-shape column was conducted for various composite materials using the closed-form solution. To establish the design guidelines for the local buckling of pultruded I-shape compression members, the simplified form of equation to find the local buckling coefficient of pultruded I-shape column was proposed as a function of mechanical properties and the width ratio of plate components using the results obtainde by the closed-form solution. In order to verify the validity of proposed solution, the results obtained by the proposed approximate solution were compared with those of the closed-form solution and the experimental results.

  • PDF

소파블록 피복제 제체의 한계상태설계를 위한 하중저항계수 보정 (Load & Resistance Factors Calibration for Front Covered Caisson Breakwater)

  • 김동현;허정원
    • 한국해안·해양공학회논문집
    • /
    • 제33권6호
    • /
    • pp.293-297
    • /
    • 2021
  • 소파블록 피복제 제체의 한계상태설계법 개발을 위해 하중저항계수 보정을 수행하였다. 실제 시공된 소파블록 피복제 제체의 설계자료를 분석하여 신뢰성해석을 수행하였으며 목표신뢰성지수에 따른 부분안전계수와 하중, 저항계수를 차례로 산정하였다. 최적화기법을 통해 한계상태설계법 개발을 위한 하중계수와 저항계수를 도출하였다. 최종 하중저항계수를 이용하여 방파제를 재설계하였으며 목표수준의 신뢰성지수를 상회하는지 검증하였다. 해외기준의 하중저항계수와 본 연구에서 구한 하중저항계수를 비교하였다.

A new hybrid method for reliability-based optimal structural design with discrete and continuous variables

  • Ali, Khodam;Mohammad Saeid, Farajzadeh;Mohsenali, Shayanfar
    • Structural Engineering and Mechanics
    • /
    • 제85권3호
    • /
    • pp.369-379
    • /
    • 2023
  • Reliability-Based Design Optimization (RBDO) is an appropriate framework for obtaining optimal designs by taking uncertainties into account. Large-scale problems with implicit limit state functions and problems with discrete design variables are two significant challenges to traditional RBDO methods. To overcome these challenges, this paper proposes a hybrid method to perform RBDO of structures that links Firefly Algorithm (FA) as an optimization tool to advanced (finite element) reliability methods. Furthermore, the Genetic Algorithm (GA) and the FA are compared based on the design cost (objective function) they achieve. In the proposed method, Weighted Simulation Method (WSM) is utilized to assess reliability constraints in the RBDO problems with explicit limit state functions. WSM is selected to reduce computational costs. To performing RBDO of structures with finite element modeling and implicit limit state functions, a First-Order Reliability Method (FORM) based on the Direct Differentiation Method (DDM) is utilized. Four numerical examples are considered to assess the effectiveness of the proposed method. The findings illustrate that the proposed RBDO method is applicable and efficient for RBDO problems with discrete and continuous design variables and finite element modeling.