• 제목/요약/키워드: Limit displacement

검색결과 359건 처리시간 0.022초

기초구조물로서 얇은 쉘 구조물의 지진응답 (Seismic Response on Thin Shell as Structural Foundation)

  • 이휘민;아지자 압둘 나살;김재열
    • 한국공간구조학회논문집
    • /
    • 제24권2호
    • /
    • pp.31-41
    • /
    • 2024
  • This study aims to investigate the seismic response of a large span thin shell structures and assess their displacement under seismic loads. The study employs finite element analysis to model a thin shell structure subjected to seismic excitation. The analysis includes eigenvalue analysis and time history analysis to evaluate the natural frequencies and displacement response of the structure under seismic loads. The findings show that the seismic response of the large span thin shell structure is highly dependent on the frequency content of the seismic excitation. The eigenvalue analysis reveals that the tenth mode of vibration of the structure corresponds to a large-span mode. The time history analysis further demonstrates, with 5% damping, that the displacement response of the structure at the critical node number 4920 increases with increasing seismic intensity, reaching a maximum displacement of 49.87mm at 3.615 seconds. Nevertheless, the maximum displacement is well below the allowable limit of the thin shell. The results of this study provide insight into the behaviour of complex large span thin shell structures as elevated foundations for buildings under seismic excitation, based on the displacement contours on different modes of eigenvalues. The findings suggest that the displacement response of the structure is significant for this new application of thin shell, and it is recommended to enhance the critical displacement area in the next design phase to align with the findings of this study to resist the seismic impact.

침하량과 압축량을 고려한 말뚝의 설계법 개발을 위한 연구 (A Study for the Development of Pile Design Method Considering Settlement and Compression)

  • 임종석;하혁;정상균
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2006년도 춘계 학술발표회 논문집
    • /
    • pp.1287-1294
    • /
    • 2006
  • A pile is compressed with settlements when loading and bearing capacity is altered along relative displacement of pile/soil on settlement and compression. Settlements of pile displaying limit skin friction is different from displaying tip resistance. Therefore, it is an error in traditional method that bearing capacity of pile is estimated from the sum of limit skin fraction and tip resistance. Accordingly, development of design method considering behavior of load-settlement is needed. In this study, we would like to establish the base for development of design method considering bearing capacity altering along displacement on settlement and compression. For this, we established system and substance of design method. And in order to establish relationship of load-settlement of pile on the type of soil, we analyzed and arranged existing database and pile loading test. On design method, settlement is assumed gradually on each capacity level being assumed gradually. Bearing capacity developing on the pile is obtained on each settlement level. Until the obtained bearing capacity will be equal to assumed capacity, this process is continued with increasing settlement. Load-settlement curve for soil classification is sketched in the process computing settlement on assumed capacity. This design method will be materialized by computation program.

  • PDF

강재 배관 Tee의 한계상태 평가를 위한 손상지수의 적용 (Application of Damage Index for Limit State Evaluation of a Steel Pipe Tee)

  • 김성완;윤다운;전법규;김성도
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제26권4호
    • /
    • pp.30-39
    • /
    • 2022
  • 원자력발전소 주요기기의 건전성 유지는 구조물의 안전성과 관련하여 매우 중요한 문제로 인식되고 있으며 배관시스템의 건전성은 원자력발전소의 안전과 관련된 매우 중요한 문제이다. 지진하중으로 인한 배관시스템의 실제 파괴모드는 피로균열에 의한 누수이며 구조적인 손상 메커니즘은 소성변형을 발생할 수 있는 큰 상대변위로 인한 저주기 피로이다. 이 연구에서는 원자력발전소의 배관시스템에서 3인치의 강재 직관과 강재 배관 Tee로 구성된 시험체에 대하여 다양한 크기의 일정한 진폭에 대하여 면내반복가력실험을 수행하였다. 지진하중으로 인한 배관시스템에서 발생하는 상대변위를 고려하기 위하여 하중진폭을 증가시켰으며, 강재 배관 Tee의 한계상태인 피로균열에 의한 누수가 발생할 때까지 수행하였다. 힘과 변위의 관계에 대하여 손상모델에 기반을 둔 손상지수를 이용하여 한계상태를 표현하였다. 그 결과 손상지수를 이용하여 강재 배관 Tee의 한계상태를 정량적으로 표현할 수 있음을 확인할 수 있었다.

Reliability of mortar filling layer void length in in-service ballastless track-bridge system of HSR

  • Binbin He;Sheng Wen;Yulin Feng;Lizhong Jiang;Wangbao Zhou
    • Steel and Composite Structures
    • /
    • 제47권1호
    • /
    • pp.91-102
    • /
    • 2023
  • To study the evaluation standard and control limit of mortar filling layer void length, in this paper, the train sub-model was developed by MATLAB and the track-bridge sub-model considering the mortar filling layer void was established by ANSYS. The two sub-models were assembled into a train-track-bridge coupling dynamic model through the wheel-rail contact relationship, and the validity was corroborated by the coupling dynamic model with the literature model. Considering the randomness of fastening stiffness, mortar elastic modulus, length of mortar filling layer void, and pier settlement, the test points were designed by the Box-Behnken method based on Design-Expert software. The coupled dynamic model was calculated, and the support vector regression (SVR) nonlinear mapping model of the wheel-rail system was established. The learning, prediction, and verification were carried out. Finally, the reliable probability of the amplification coefficient distribution of the response index of the train and structure in different ranges was obtained based on the SVR nonlinear mapping model and Latin hypercube sampling method. The limit of the length of the mortar filling layer void was, thus, obtained. The results show that the SVR nonlinear mapping model developed in this paper has a high fitting accuracy of 0.993, and the computational efficiency is significantly improved by 99.86%. It can be used to calculate the dynamic response of the wheel-rail system. The length of the mortar filling layer void significantly affects the wheel-rail vertical force, wheel weight load reduction ratio, rail vertical displacement, and track plate vertical displacement. The dynamic response of the track structure has a more significant effect on the limit value of the length of the mortar filling layer void than the dynamic response of the vehicle, and the rail vertical displacement is the most obvious. At 250 km/h - 350 km/h train running speed, the limit values of grade I, II, and III of the lengths of the mortar filling layer void are 3.932 m, 4.337 m, and 4.766 m, respectively. The results can provide some reference for the long-term service performance reliability of the ballastless track-bridge system of HRS.

하중-균열열림변위를 이용한 굽힘하중이 작용하는 원주방향 관통균열 배관의 새로운 J 실험법 (New J Testing Method Using Load-COD Curve for Circumferential Through-Wall Cracked Pipes under Bending)

  • 허남수;김윤재;김영진
    • 대한기계학회논문집A
    • /
    • 제30권1호
    • /
    • pp.60-65
    • /
    • 2006
  • The present paper provides experimental J estimation equation for the circumferential through-wall cracked pipe under four-point bending, based on the load-crack opening displacement (COD) record. Based on the limit analysis and the kinematically admissible rigid-body rotation field, the plastic ${\eta}$-factor for the load-COD record is derived and is compared with that for the load-load line displacement record. Comparison with the J results from detailed elastic-plastic finite element (FE) analysis shows that the proposed method based on the load-COD record provides reliable J estimates even for shallow cracks, whereas the conventional approach based on the load-load line displacement record gives erroneous results for shallow cracks. Thus, the proposed J estimation method could be recommended for testing the circumferential through-wall cracked pipe, particularly with shallow cracks.

Extension of Direct Displacement-Based Design to Include Higher-Mode Effects in Planar Reinforced Concrete Frame Buildings

  • 아베베 베카 하일루;이종세
    • 한국지진공학회논문집
    • /
    • 제22권5호
    • /
    • pp.299-309
    • /
    • 2018
  • Now that problems with force-based seismic design have been clearly identified, design is inclined toward displacement-based methods. One such widely used method is Direct-Displacement-Based Design (DDBD). Yet, one of the shortcomings of DDBD is considering higher-mode amplification of story shear, moments, and displacements using equations obtained from limited parametric studies of regular planar frames. In this paper, a different approach to account for higher-mode effects is proposed. This approach determines the lateral secant stiffness of the building frames that fulfill the allowable inter-story drift without exceeding the desired story displacements. Using the stiffness, an elastic response spectrum analysis is carried out to determine elastic higher-mode force effects. These force effects are then combined with DDBD-obtained first-mode force effects using the appropriate modal superposition method so that design can be performed. The proposed design procedure is verified using Nonlinear Time History Analysis (NTHA) of twelve planar frames in four categories accounting for mass and stiffness irregularity along the height. In general, the NTHA response outputs compared well with the allowable limits of the performance objective. Thus, it fulfills the aim of minimizing the use of NTHA for planar frame buildings, thereby saving computational resources and effort.

관리도 기법을 이용한 터널 변위수렴 특성에 관한 연구 (A Study on Convergency of Tunnel Displacement using Control Chart Method)

  • 임성빈;김성권;서용석;박시현
    • 지질공학
    • /
    • 제17권2호
    • /
    • pp.197-204
    • /
    • 2007
  • 터널은 굴착에 의해 지반의 변형을 일으키며, 지보를 설치하고 시간이 지남에 따라 점차 안정화된다. 터널 굴착이 지반 거동에 미치는 영향은 계측지점과 막장간의 거리가 증가함에 따라 감소한다. 터널의 변위가 수렴하여 안정화되는 시점을 예측할 수 있다면, 안정화 이후 이루어지는 여러 공정들을 앞당김으로써 시간적, 경제적 손실을 줄일 수 있다. 따라서 본 연구에서는 변위 수렴 시점을 예측하기 위하여 관리도 기법을 적용하였다. 퇴적암을 기반으로 하는 터널에 대한 관리도 판정 결과, 막장에서부터의 거리가 최대 100 m 이내에서 변위가 수렴하였다.

슬릿형 강재이력 감쇠장치의 성능평가를 위한 실험연구 (An Experimental Study on Performance Evaluation of Hysteretic Steel Slit Damper)

  • 최기선;이현지;김민선;유영찬
    • 대한건축학회논문집:구조계
    • /
    • 제34권1호
    • /
    • pp.33-39
    • /
    • 2018
  • This study performed experimental validation of the hysteretic steel slit damper's basic and dependent characteristics, which should be considered for the design. The basic characteristic of the steel slit damper is used for determining design properties of non-linear analysis, such as yielding strength, yielding displacement, elastic stiffness and post-yielding stiffness. In order to evaluate dependent characteristics of the hysteretic steel slit damper, repeated deformation capacity with respect to the displacement, velocity and aspect ratio of the damper was evaluated. In this study, steel slit damper, which is widely used in Korea, was considered. The slit dampers with 55kN and 240kN of yielding strength were produced and tested. It was concluded that the slit damper's hysteresis behavior was affected by the dependent characteristics: displacement, velocity and aspect ratio. In other words, the steel slit damper's behavior was stable within limit displacement, and aspect ratio of the strut affected repeated deformation capacity of the damper subjected to large deformation. In addition, it was observed that the repeated deformation capacity abruptly decreased at the high speed range (${\geq}60mm/sec$). Furthermore, the experimental results were evaluated with the criterion of the damping device specified in ASCE7-10.

차세대 내진 설계 규준을 위한 계수 결정 방법 (Method of Determination of Seismic Design Parameters for the Next Generation of Design Provisions)

  • 한상환;이리형
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 1995년도 봄 학술발표회 논문집
    • /
    • pp.88-96
    • /
    • 1995
  • Seismic design provisions in Korea has developed based on seismic provisions in United States (e.g., ATC 3-06). Current seismic design provisions in U .S. is moving toward adopting enhanced concept for design. Federal Emergence Management Agency (FEMA) Provides the NEHRP recommended Provisions for the Development of Seismic Regulations for New Buildings which can be used as a source document for use by any interested members of the building community. Current seismic design provisions in U .S. generally use a uni-level force. These provisions can not be satisfied if the limit state design is concerned. Limit state can be defined as a state causing undesirable performance o( a structure (e .g., serviceability, ultimate, buckling, etc.). Even if there are provision for controlling drift by two levels, it is still difficult to satisfy limit states using uni-level force. Architectural Institute of Japan (AIJ) uses a hi-level forces Int seismic loadings which can satisfy serviceability and ultimate limit state. However, the seismic parameters used in AIJ guideline are basically determined by subjective manner of code committee member and professions. These parameters need to be determined based on target quantities (target reliability, target energy dissipation, target displacement, target stress level, etc.). This study develops the method to determine the sesmic design parameters based on a certain taget level. Reliability is used as a target level and load factors in ANSI/ASCE 7-88 are selected as design parameters to be determined.

  • PDF

Rotational capacity of shallow footings and its implication on SSI analyses

  • Blandon, Carlos A.;Smith-Pardo, J. Paul;Ortiz, Albert
    • Earthquakes and Structures
    • /
    • 제8권3호
    • /
    • pp.591-617
    • /
    • 2015
  • Standards for seismic assessment and retrofitting of buildings provide deformation limit states for structural members and connections. However, in order to perform fully consistent performance-based seismic analyses of soil-structure systems; deformation limit states must also be available for foundations that are vulnerable to nonlinear actions. Because such limit states have never been established in the past, a laboratory testing program was conducted to study the rotational capacity of small-scale foundation models under combined axial load and moment. Fourteen displacement-controlled monotonic and cyclic tests were performed using a cohesionless soil contained in a $2.0{\times}2.0{\times}1.2m$ container box. It was found that the foundation models exhibited a stable hysteretic behavior for imposed rotations exceeding 0.06 rad and that the measured foundation moment capacity complied well with Meyerhof's equivalent width concept. Simplified code-based soil-structure analyses of an 8-story building under an array of strong ground motions were also conducted to preliminary evaluate the implication of finite rotational capacity of vulnerable foundations. It was found that for the same soil as that of the experimental program foundations would have a deformation capacity that far exceeds the imposed rotational demands under the lateral load resisting members so yielding of the soil may constitute a reliable source of energy dissipation for the system.