• 제목/요약/키워드: Limit States Design Method

검색결과 46건 처리시간 0.023초

Minimum-weight seismic design of a moment-resisting frame accounting for incremental collapse

  • Lee, Han-Seon
    • Structural Engineering and Mechanics
    • /
    • 제13권1호
    • /
    • pp.35-52
    • /
    • 2002
  • It was shown in the previous study (Lee and Bertero 1993) that incremental collapse can lead to the exhaustion of the plastic rotation capacity at critical regions in a structure when subjected to the number of load cycles and load intensities as expected during maximum credible earthquakes and that this type of collapse can be predicted using the shakedown analysis technique. In this study, a minimum-weight design methodology, which takes into account not only the prevention of this incremental collapse but also the requirements of the serviceability limit states, is proposed by using the shakedown analysis technique and a nonlinear programming algorithm (gradient projection method).

On the material properties of shell plate formed by line heating

  • Lim, Hyung Kyun;Lee, Joo-Sung
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제9권1호
    • /
    • pp.66-76
    • /
    • 2017
  • This paper is concerned with investigating the plastic material properties of steel plate formed by line heating method, and is aimed at implementing more rational design considering the accidental limit states such as collision or grounding. For the present study, line heating test for marine grade steel plate has been carried out with varying plate thickness and heating speed, and then microscopic examination and tensile test have been carried out. From the microscopic, it is found that the grain refined zones like ferrite and pearlite are formed all around the heat affected zone. From the tensile test results, it is seen that yield strength, tensile strength, fracture strain, hardening exponent and strength coefficient vary with plate thickness and heat input quantity. The formulae relating the material properties and heat input parameter should be, therefore, derived for the design purpose considering the accidental impact loading. This paper ends with describing the extension of the present study.

중약진 지역에서의 지진격리교량의 비용효율성 평가 (Cost Effectiveness Evaluation of Seismic Isolated Bridges in Low and Moderate Seismic Region)

  • 고현무
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 2000년도 추계 학술발표회 논문집 Proceedings of EESK Conference-Fall 2000
    • /
    • pp.440-447
    • /
    • 2000
  • In order to evaluate the cost effectiveness of seismic isolation for bridges in low and moderate seismic region, a method of calculation minimum life-cycle cost of seismic-isolated bridges under specific acceleration level and soil condition is developed. Input ground motion is modeled as spectral density function compatible with response spectrum for combination of acceleration coefficient and site coefficient. Failure probability is calculated by spectrum analysis based on random vibration theories to simplify repetitive calculations in the minimization procedure. Ductility of piers and its effects on cost effectiveness are considered by stochastic linearization method. Cost function and cost effectiveness index are defined by taking into consideration the characteristics of seismic isolated bridges. Limit states for calculation of failure probability are defined on superstructure, isolator and pier, respectively. The results of example design and analysis show that seismic isolation is more cost-effective in low and moderate seismic region than in high seismic region.

  • PDF

Analytical investigation on lateral load responses of self-centering walls with distributed vertical dampers

  • Huang, Xiaogang;Zhou, Zhen;Zhu, Dongping
    • Structural Engineering and Mechanics
    • /
    • 제72권3호
    • /
    • pp.355-366
    • /
    • 2019
  • Self-centering wall (SCW) is a resilient and sustainable structural system which incorporates unbonded posttensioning (PT) tendons to provide self-centering (SC) capacity along with supplementary dissipators to dissipate seismic energy. Hysteretic energy dissipators are usually placed at two sides of SCWs to facilitate ease of postearthquake examination and convenient replacement. To achieve a good prediction for the skeleton curve of the wall, this paper firstly developed an analytical investigation on lateral load responses of self-centering walls with distributed vertical dampers (VD-SCWs) using the concept of elastic theory. A simplified method for the calculation of limit state points is developed and validated by experimental results and can be used in the design of the system. Based on the analytical results, parametric analysis is conducted to investigate the influence of damper and tendon parameters on the performance of VD-SCWs. The results show that the proposed approach has a better prediction accuracy with less computational effects than the Perez method. As compared with previous experimental results, the proposed method achieves up to 60.1% additional accuracy at the effective linear limit (DLL) of SCWs. The base shear at point DLL is increased by 62.5% when the damper force is increased from 0kN to 80kN. The wall stiffness after point ELL is reduced by 69.5% when the tendon stiffness is reduced by 75.0%. The roof deformation at point LLP is reduced by 74.1% when the initial tendon stress is increased from $0.45f_{pu}$ to $0.65f_{pu}$.

A nonlinear model for ultimate analysis and design of reinforced concrete structures

  • Morfidis, Konstantinos;Kiousis, Panos D.;Xenidis, Hariton
    • Computers and Concrete
    • /
    • 제14권6호
    • /
    • pp.695-710
    • /
    • 2014
  • This paper presents a theoretical and computational approach to solve inelastic structures subjected to overloads. Current practice in structural design is based on elastic analysis followed by limit strength design. Whereas this approach typically results in safe strength design, it does not always guarantee satisfactory performance at the service level because the internal stiffness distribution of the structure changes from the service to the ultimate strength state. A significant variation of relative stiffnesses between the two states may result in unwanted cracking at the service level with expensive repairs, while, under certain circumstances, early failure may occur due to unexpected internal moment reversals. To address these concerns, a new inelastic model is presented here that is based on the nonlinear material response and the interaction relation between axial forces and bending moments of a beam-column element. The model is simple, reasonably accurate, and computationally efficient. It is easy to implement in standard structural analysis codes, and avoids the complexities of expensive alternative analyses based on 2D and 3D finite-element computations using solid elements.

A Continuous Robust Control Strategy for the Active Aeroelastic Vibration Suppression of Supersonic Lifting Surfaces

  • Zhang, K.;Wang, Z.;Behal, A.;Marzocca, P.
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제13권2호
    • /
    • pp.210-220
    • /
    • 2012
  • The model-free control of aeroelastic vibrations of a non-linear 2-D wing-flap system operating in supersonic flight speed regimes is discussed in this paper. A novel continuous robust controller design yields asymptotically stable vibration suppression in both the pitching and plunging degrees of freedom using the flap deflection as a control input. The controller also ensures that all system states remain bounded at all times during closed-loop operation. A Lyapunov method is used to obtain the global asymptotic stability result. The unsteady aerodynamic load is considered by resourcing to the non-linear Piston Theory Aerodynamics (PTA) modified to account for the effect of the flap deflection. Simulation results demonstrate the performance of the robust control strategy in suppressing dynamic aeroelastic instabilities, such as non-linear flutter and limit cycle oscillations.

판형 열교환기의 열전달성능 손실 없이 유동방향 길이를 축소하는 방법 (A Method to Reduce Flow Depth of a Plate Heat Exchanger without a Loss of Heat Transfer Performance)

  • 송귀은;이대영
    • 설비공학논문집
    • /
    • 제18권2호
    • /
    • pp.129-136
    • /
    • 2006
  • Optimal design of an air-to-liquid finned plate heat exchanger is considered theoretically in this study. Based on existing correlations for the pressure loss and the heat transfer in channel flows, the optimal configuration of the plate heat exchanger including the optimal plate pitch and the optimal fin pitch is obtained to maximize the heat transfer within the limit of the pressure drop for a given flow depth of the plate heat exchanger. It is found that the optimal fin pitch is about one ninth of the optimal plate pitch. In the optimal configuration, the flow and thermal condition in the channels is just at the boundary between the laminar developing and laminar fully developed states. It is also found when reducing the flow depth of plate heat exchangers for compactness, the heat transfer performance can be maintained exactly the same if the geometric parameters such as the plate thickness, plate pitch, fin thickness, and fin pitch are reduced proportional to the square root of the flow depth as long as the flow keeps laminar within the heat exchangers.

한국의 시장위험 프리미엄: 분석과 시사점 (Market Risk Premium in Korea: Analysis and Policy Implications)

  • 권세훈;한상범
    • 아태비즈니스연구
    • /
    • 제15권2호
    • /
    • pp.71-88
    • /
    • 2024
  • Purpose - This study provides an overview of existing research and practices related to market risk premiums(MRP), and empirically estimates the MRP in Korea, particularly using the related option prices. We also seek to improve the current MRP practices and explore alternative solutions. Design/methodology/approach - We present the option price-based MRP estimation method, as proposed by Martin (2017), and implement it within the context of the Korean stock market. We then juxtapose these results with those derived from other methods, and compare the characteristics with those of the United States. Findings - We found that the lower limit of the MRP in the Korean stock market shows a much lower value compared to the US. There seems to be the possibility of a market crash, exchange rate volatility, or a lack of option trading data. We investigated the predictive power of the estimated values and discovered that the weighted average of the results of various methodologies using the Principal Component Analysis (PCA) is superior to the individual method's results. Research implications or Originality - It is required to explore various methods of estimating MRP that are suitable for the Korean stock market. In order to improve the estimation methodology based on option prices, it is necessary to develop the methods using the higher-order(third order or above) moments, or consider additional risk factors such as the possibility of a crash.

재하시험에 의한 PHC 매입말뚝의 저항계수 산정 II (Estimation of resistance coefficient of PHC bored pile by Load Test II)

  • 박종배;박용부;권영환
    • 토지주택연구
    • /
    • 제9권3호
    • /
    • pp.1-8
    • /
    • 2018
  • 유럽과 미국에서는 말뚝기초 설계에 한계상태설계법 사용이 거의 정착되었으며, 세계적 추세에 따라 국내에서도 국토해양부가 한계상태설계법에 기반한 교량하부기초 설계기준을 제정하였지만, 국내 말뚝공법 및 지반조건에 대한 저항계수 연구가 부족하여 당장 설계에 반영하기에는 어려운 여건이었다. 이에 본 연구에서는 국내에서 많이 사용되고 있는 PHC 매입말뚝의 저항계수를 구하기 위하여 LH설계기준과 도로교설계기준 방법으로 산정한 지지력과 LH 현장에서 실시한 정재하시험(21회)과 동재하시험(EOID 21회, Restrike 21회) 결과를 신뢰성분석을 실시하였으며, 선행 논문(재하시험에 의한 PHC 매입말뚝의 저항계수 산정)에서 수행한 결과보다 2배 이상 많은 데이터를 추가하여 분석하였다. 그 결과 정재하지지력(극한)으로 구한 저항계수는 설계식 및 목표신뢰도지수에 따라 0.64~0.83, 동재하지지력(극한)으로 구한 저항계수는 0.42~0.55로 나와 정재하지지력(극한)으로 구한 저항계수보다 약 33% 작게 나타났다. 반면 수정동재하지지력(EOID의 극한선단지지력 + Restrike의 극한주면지지력)으로 구한 저항계수는 0.55~0.71로 나와 정재하지지력(극한)으로 구한 저항계수와 비교 시 그 차이가 약 14%로 줄어들었다. 데이터 추가에 의해 저항계수를 산정한 결과 이전 저항계수와 같거나 0.04정도 증가하여 데이터가 2배 이상 추가되어도 저항계수가 의미 있을 정도로 크게 변하지 않은 것으로 나타났다. 결론적으로 본 연구에서 정재하 및 동재하시험으로 산정한 전체 저항계수는 전반적으로 도로교설계기준(2015)에서 제시한 저항계수 0.3보다 커서 경제적인 설계가 가능한 것으로 나타났다.

Wafer Hybrid Bonding 정밀 정렬을 위한 θz 스테이지 설계 및 제어평가 (θz Stage Design and Control Evaluation for Wafer Hybrid Bonding Precision Alignment)

  • 문제욱;김태호;정용진;이학준
    • 반도체디스플레이기술학회지
    • /
    • 제20권4호
    • /
    • pp.119-124
    • /
    • 2021
  • In a situation where Moore's law, which states that the performance of semiconductor integrated circuits doubles every two years, is showing a limit from a certain point, and it is difficult to increase the performance due to the limitations of exposure technology.In this study, a wafer hybrid method that can increase the degree of integration Various research on bonding technology is currently in progress. In this study, in order to achieve rotational precision between wafers in wafer hybrid bonding technology, modeling of θz alignment stage and VCM actuator modeling used for rotational alignment, magnetic field analysis and desgin, control, and evaluation are performed. The system of this study was controlled by VCM actuator, capactive sensor, and dspace, and the working range was ±7200 arcsec, and the in-position and resoultion were ±0.01 arcsec. The results of this study confirmed that safety and precise control are possible, and it is expected to be applied to the process to increase the integration.