Basaga, Hasan Basri;Bayraktar, Alemdar;Kaymaz, Irfan
Structural Engineering and Mechanics
/
제42권2호
/
pp.175-189
/
2012
This paper presents an algorithm for structural reliability with the response surface method. For this aim, an approach with three stages is proposed named as improved response surface method. In the algorithm, firstly, a quadratic approximate function is formed and design point is determined with First Order Reliability Method. Secondly, a point close to the exact limit state function is searched using the design point. Lastly, vector projected method is used to generate the sample points and Second Order Reliability Method is performed to obtain reliability index and probability of failure. Five numerical examples are selected to illustrate the proposed algorithm. The limit state functions of three examples (cantilever beam, highly nonlinear limit state function and dynamic response of an oscillator) are defined explicitly and the others (frame and truss structures) are defined implicitly. ANSYS finite element program is utilized to obtain the response of the structures which are needed in the reliability analysis of implicit limit state functions. The results (reliability index, probability of failure and limit state function evaluations) obtained from the improved response surface are compared with those of Monte Carlo Simulation, First Order Reliability Method, Second Order Reliability Method and Classical Response Surface Method. According to the results, proposed algorithm gives better results for both reliability index and limit state function evaluations.
Reliability analysis is a probabilistic approach to determine a safety level of a system. Reliability is defined as a probability of a system (or a structure, in structural engineering) to functionally perform under given conditions. In the 1960s, Basler defined the reliability index as a measure to elucidate the safety level of the system, which until today is a commonly used parameter. However, the reliability index has been formulated based on the pivotal assumption which assumed that the considered limit state function is normally distributed. Nevertheless, it is not guaranteed that the limit state function of systems follow as normal distributions; therefore, there is a need to define a new reliability index for no-normal distributions. The main contribution of this paper is to define a sophisticated reliability index for limit state functions which their distributions are non-normal. To do so, the new definition of reliability index is introduced for non-normal limit state functions according to the probability functions which are calculated based on the convolution theory. Eventually, as the state of the art, this paper introduces a simplified method to calculate the reliability index for non-normal distributions. The simplified method is developed to generate non-normal limit state in terms of normal distributions using series of Gaussian functions.
This paper presents a novel method for predicting the failure probability of structural or mechanical systems subjected to random loads and material properties involving multiple design points. The method involves Multicut High Dimensional Model Representation (Multicut-HDMR) technique in conjunction with moving least squares to approximate the original implicit limit state/performance function with an explicit function. Depending on the order chosen sometimes truncated Cut-HDMR expansion is unable to approximate the original implicit limit state/performance function when multiple design points exist on the limit state/performance function or when the problem domain is large. Multicut-HDMR addresses this problem by using multiple reference points to improve accuracy of the approximate limit state/performance function. Numerical examples show the accuracy and efficiency of the proposed approach in estimating the failure probability.
In structural reliability analysis, the response surface method is a powerful method to evaluate the probability of failure. However, the location of experimental points used to form a response surface function must be selected in a judicious way. It is necessary for the highly nonlinear limit state functions to consider the design point and the nonlinear trend of the limit state, because both of them influence the probability of failure. In this paper, in order to approximate the actual limit state more accurately, experimental points are selected close to the design point and the actual limit state, and consider the nonlinear trend of the limit state. Linear, quadratic and cubic polynomials without mixed terms are utilized to approximate the actual limit state. The direct Monte Carlo simulation on the approximated limit state is carried out to determine the probability of failure. Four examples are given to demonstrate the efficiency and the accuracy of the proposed method for both numerical and implicit limit states.
본 논문에서는 불확실성을 확률변수로 가정하고 구조물의 파손기준을 한계상태식(Limit State Equation)으로 정의하였다. 한계상태식을 Fleishman의 3차 다항식으로 근사하고 이론적인 확률 모멘트(Moments)를 계산하였다. Fleishman은 표준정규 분포 확률변수에 대해서만 3차 다항식을 제시하였으나, 본 논문에서는 이를 확장하여 베타, 감마, 균일 분포 등 다양한 확률 변수에 적용하였다. 확률 모멘트를 계산하기 위해서 누률(Cumulants)과 정규화된 한계상태식을 활용하였으며, 피어슨 시스템(Pearson System)을 통해 한계상태식의 확률분포를 근사하였다.
In this paper, a reliability-based design optimization method, which enables the determination of optimum design that incorporate confidence range for structures, is studied. Response surface method and Monte Carlo simulation are utilized to determine limit state function. The proposed method is applied to the I-type steel structure for reliability based optimal design.
In this paper, a closed-loop system constructed with a linear plant and nonlinearity in the feedback connection is considered to argue against its planar orbital stability. Through a state space approach, a main result that presents a sufficient stability criterion of the limit cycle predicted by solving the harmonic balance equation is given. Preliminarily, the harmonic balance of the nonlinear feedback loop is assumed to have a solution that determines the characteristics of the limit cycle. Using a state-space approach, the nonlinear loop equation is reformulated into a linear perturbed model through the introduction of a residual operator. By considering a series of transformations, such as a modified eigenstructure decomposition, periodic averaging, change of variables, and coordinate transformation, the stability of the limit cycle can be simply tested via a scalar function and matrix. Finally, the stability criterion is addressed by constructing a composite Lyapunov function of the transformed system.
A reliability analysis method is proposed in this paper based on the maximum entropy (MaxEnt) principle in which constraints are specified in terms of the fractional moments instead of integer moments. Then a multiplicative dimensional reduction method (M-DRM) is introduced to compute the fractional moments. The method is applicable for both explicit and implicit limit state functions of complex structures. After two examples illustrate the accuracy and efficiency of this method in comparison to the Monte Carlo simulation (MCS), the method is used to analyze the flutter reliability of suspension bridge. The results show that the empirical formula method in which the limit state function is explicitly represented as a function of variables is only a too conservative estimate for flutter reliability analysis but is not accurate adequately. So it is not suitable for reliability analysis of bridge flutter. The actual flutter reliability analysis should be conducted based on a finite element method in which limit state function is implicitly represented as a function of variables. The proposed M-DRM provide an alternate and efficient way to analyze a much more complicated flutter reliability of long span suspension bridge.
Kim, Honggie;Lee, Yun Hee;Shin, Hee Sung;Lee, Sounki
Communications for Statistical Applications and Methods
/
제10권2호
/
pp.497-505
/
2003
Under normality assumption, the tolerance interval for a future observation is sometimes of great interest in statistics. In this paper, we state the influence function on the standard deviation $\sigma$, and use it to derive the influence function on tolerance limits. Simulation study shows that the two influence functions perform very well.
Rolling stock structures such as bogie frame and car body play an important role for the support of vehicle leading. In general, more than 25 years' durability is needed for them. A lot of study has been carried out for the prediction of the fatigue life of the bogie frame and car body in experimental and theoretical domains. One of the new methods is a probabilistic fatigue lift evaluation. The objective of this paper is to estimate the fatigue lift of the bogie frame of an electric car, which was developed by the Korea Railroad Research Institute (KRRI). We used two approaches. In the first approach probabilistic distribution of S-N curve and limit state function of the equivalent stress of the measured stress spectra are used. In the second approach, limit state function is also used. And load spectra measured by strain gauges are approximated by the two-parameter Weibull distribution. Other probabilistic variables are represented by log-normal and normal distributions. Finally, reliability index and structural integrity of the bogie frame are estimated.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.