• Title/Summary/Keyword: Limit Load Solution

Search Result 66, Processing Time 0.021 seconds

Comprehensive evaluation of structural geometrical nonlinear solution techniques Part II: Comparing efficiencies of the methods

  • Rezaiee-Pajand, M.;Ghalishooyan, M.;Salehi-Ahmadabad, M.
    • Structural Engineering and Mechanics
    • /
    • v.48 no.6
    • /
    • pp.879-914
    • /
    • 2013
  • In part I of the article, formulation and characteristics of the several well-known structural geometrical nonlinear solution techniques were studied. In the present paper, the efficiencies and capabilities of residual load minimization, normal plane, updated normal plane, cylindrical arc length, work control, residual displacement minimization, generalized displacement control and modified normal flow will be evaluated. To achieve this goal, a comprehensive comparison of these solution methods will be performed. Due to limit page of the article, only the findings of 17 numerical problems, including 2-D and 3-D trusses, 2-D and 3-D frames, and shells, will be presented. Performance of the solution strategies will be considered by doing more than 12500 nonlinear analyses, and conclusions will be drawn based on the outcomes. Most of the mentioned structures have complex nonlinear behavior, including load limit and snap-back points. In this investigation, criteria like number of diverged and complete analyses, the ability of passing load limit and snap-back points, the total number of steps and analysis iterations, the analysis running time and divergence points will be examined. Numerical properties of each problem, like, maximum allowed iteration, divergence tolerance, maximum and minimum size of the load factor, load increment changes and the target point will be selected in such a way that comparison result to be highly reliable. Following this, capabilities and deficiencies of each solution technique will be surveyed in comparison with the other ones, and superior solution schemes will be introduced.

Engineering Estimation of Limit Load Solution for Wall-Thinned Pipes Considering Material Properties (재료물성을 고려한 감육배관의 공학적 한계하중해 제시)

  • Choi, Jae-Boong;Kim, Jin-Su;Goo, Bon-Geol;Kim, Young-Jin;Choi, Young-Hwan
    • Proceedings of the KSME Conference
    • /
    • 2001.06a
    • /
    • pp.351-356
    • /
    • 2001
  • A potential loss of structural integrity due to aging of nuclear piping may have a significant effect on the safety of nuclear power plants. In particular, failures due to the erosion and corrosion defects are a major concern. As a result, there is a need to assess the remaining strength of pipe with erosion/corrosion defects. In this paper, a limit load solution for the eroded and corroded SA106 Grade B pipes subjected by internal pressure is developed. based in 3-D finite element analyses, considering a wide range of the shape of pipeline, flaw depth and axial flaw length parametrically.

  • PDF

Development of Corrosion Defect Assessment Program for API X65 Gas Pipelines (국내가스배관 부식부위 평가프로그램의 개발)

  • Choi, Jae-Boong;Kim, Youn-Ho;Goo, Bon-Geol;Kim, Young-Jin;Kim, Young-Pyo;Baek, Jong-Hyun;Kim, Woo-Sik
    • Proceedings of the KSME Conference
    • /
    • 2001.06a
    • /
    • pp.453-458
    • /
    • 2001
  • Pipelines have the highest capacity and are the safest and the least environmentally disruptive way for gas or oil transmission. Recently, failures due to corrosion defects have become of major concern in maintaining pipeline integrity. A number of solutions have been developed for the assessment of remaining strength of corroded pipelines. However, these solutions are known to be dependent on material properties and pipeline geometries. In this paper, a Fitness-For-Purpose type limit load solution for corroded gas pipelines made of the X65 steel is proposed. For this purpose, a series of burst tests with various types of corrosion defects are performed. Finite element simulations are carried out to derive an appropriate failure criterion. And then, further, extensive finite element analyses are performed to obtain the FFP type limit load solution for corroded X65 gas pipelines as a function of defect depth, length and pipeline geometry. And also, a window based computer program far the assessment of corrosion defect, which is named as COPAP(COrroded Pipeline Assessment Program) has been developed on the basis of proposed limit load solution.

  • PDF

Fracture Analysis Based on the Critical-CTOA Criterion (임계 CTOA조건을 이용한 파괴해석)

  • 구인회
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.9
    • /
    • pp.2223-2233
    • /
    • 1993
  • An engineering method is suggested to calculate the applied load versus crack extension in the elastic-plastic fracture. The condition for an increment of crack extension is set by a critical increment of crack-up opening displacement(CTOD). The ratio of the CTOD increment to the incremental crack extention is a critical crack-tip opening angle(CTOA), assumed to be constant for a material of a given thickness. The Dugdale model of crack-tip deformation in an infinite plate is applied to the method, and a complete solution for crack extension and crack instability is obtained. For finite-size specimens of arbitrary geometry in general yielding, an approximate generalization of the Dugdale model is suggested so that the approximation approaches the small-scale yielding solution in a low applied load and the finite-element solution in a large applied load. Maximum load is calculated so that an applied load attains either a limit load on an unbroken ligament or a peak load during crack extension. The proposed method was applied to three-point bend specimens of a carbon steel SM45C in various sizes. Reasonable agreements are found between calculated maximum loads and experimental failure loads. Therefore, the method can be a viable alternative to the J-R curve approach in the elastic-plastic fracture analysis.

Plastic Limit Loads for Through-Wall Cracked Pipes Using 3-D Finite Element Limit Analyses (3차원 유한요소 한계해석을 이용한 관통균열 배관의 소성한계하중)

  • Huh Nam-Su;Kim Young-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.5 s.248
    • /
    • pp.568-575
    • /
    • 2006
  • The present paper provides plastic limit load solutions of axial and circumferential through-wall cracked pipes based on detailed three-dimensional (3-D) finite element (FE) limit analysis using elastic-perfectly-plastic behavior. As a loading condition, axial tension, global bending moment, internal pressure, combined tension and bending and combined internal pressure and bending are considered for circumferential through-wall cracked pipes, while only internal pressure is considered for axial through-wall cracked pipes. Especially, more emphasis is given for through-wall cracked pipes subject to combined loading. Comparisons with existing solutions show a large discrepancy in short through-wall crack (both axial and circumferential) for internal pressure. In the case of combined loading, the FE limit analyses results show thickness effect on limit load solutions. Furthermore, the plastic limit load solution for circumferential through-wall cracked pipes under bending is applied to derive plastic $\eta\;and\;{\gamma}$-factor of testing circumferential through-wall cracked pipes to estimate fracture toughness. Being based on detailed 3-D FE limit analysis, the present solutions are believed to be meaningful fur structural integrity assessment of through-wall cracked pipes.

Non-linear time-dependent post-elastic analysis of suspended cable considering creep effect

  • Kmet, S.;Tomko, M.;Brda, J.
    • Structural Engineering and Mechanics
    • /
    • v.22 no.2
    • /
    • pp.197-222
    • /
    • 2006
  • In this paper, the non-linear time-dependent closed-form, discrete and combined solutions for the post-elastic response of a geometrically and physically non-linear suspended cable to a uniformly distributed load considering the creep effects, are presented. The time-dependent closed-form method for the particularly straightforward determination of a vertical uniformly distributed load applied over the entire span of a cable and the accompanying deflection at time t corresponding to the elastic limit and/or to the elastic region, post-elastic and failure range of a suspended cable is described. The actual stress-strain properties of steel cables as well as creep of cables and their rheological characteristics are considered. In this solution, applying the Irvine's theory, the direct use of experimental data, such as the actual stress-strain and strain-time properties of high-strength steel cables, is implemented. The results obtained by the closed-form solution, i.e., a load corresponding to the elastic limit, post-elastic and failure range at time t, enable the direct use in the discrete non-linear time-dependent post-elastic analysis of a suspended cable. This initial value of load is necessary for the non-linear time-dependent elastic and post-elastic discrete analysis, concerning incremental and iterative solution strategies with tangent modulus concept. At each time step, the suspended cable is analyzed under the applied load and imposed deformations originated due to creep. This combined time-dependent approach, based on the closed-form solution and on the FEM, allows a prediction of the required load that occurs in the post-elastic region. The application of the described methods and derived equations is illustrated by numerical examples.

Engineering J-Integral Estimation for Semi-Elliptical Surface Cracked Plates in Tension (인장하중이 작용하는 평판에 존재하는 반타원 표면균열의 J-적분 계산식)

  • Sim, Do-Jun;Kim, Yun-Jae;Choe, Jae-Bung;Kim, Yeong-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.11
    • /
    • pp.1777-1784
    • /
    • 2001
  • This paper provides d simplified engineering J estimation method fur semi-e1liptical surface cracked plates in tension, based on the reference stress approach. Note that the essential element of the reference stress approach is the plastic limit lead in the definition of the reference stress. However, for surface cracks, the definition of the limit load is ambiguous ("local" or "global"limit lead), and thus the most relevant limit load (and thus reference stress) for the J estimation should be determined. In the present work, such limit load solution is found by comparing reference stress bated J results with those from extensive 3-D finite element analyses. Validation of the proposed equation against FF J results based on tactual experimental tensile data of a 304 stainless steel shows excellent agreements not only far the J values at the deepest point but also for those at an arbitrary paint along the crack front, including at the surface point. Thus the present results provide a good engineering tool for elastic-plastic fracture analyses of surface cracked plates in tension.

A Study on the Optimal Power Flow Solution (최적 전력 조류 해법에 관한 연구)

  • You, Seok-Koo;Min, Pyoung-Oh
    • Proceedings of the KIEE Conference
    • /
    • 1989.11a
    • /
    • pp.176-179
    • /
    • 1989
  • Newton's OPF algorithm, for each iteration, solves with second order approximation of Lagraqngian function and sparse matrix technique. When load model is applied to this technique, load voltages have tendency to be fixed at lower limit. It makes the solution inadequte. In this paper, reference bus voltage specification technique suggested to make adequate load voltage. This method is verified useful 6-bus Ward-Hale sample system.

  • PDF

A New Solution for Stochastic Optimal Power Flow: Combining Limit Relaxation with Iterative Learning Control

  • Gong, Jinxia;Xie, Da;Jiang, Chuanwen;Zhang, Yanchi
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.1
    • /
    • pp.80-89
    • /
    • 2014
  • A stochastic optimal power flow (S-OPF) model considering uncertainties of load and wind power is developed based on chance constrained programming (CCP). The difficulties in solving the model are the nonlinearity and probabilistic constraints. In this paper, a limit relaxation approach and an iterative learning control (ILC) method are implemented to solve the S-OPF model indirectly. The limit relaxation approach narrows the solution space by introducing regulatory factors, according to the relationship between the constraint equations and the optimization variables. The regulatory factors are designed by ILC method to ensure the optimality of final solution under a predefined confidence level. The optimization algorithm for S-OPF is completed based on the combination of limit relaxation and ILC and tested on the IEEE 14-bus system.

Limit Load and Fully Plastic Stress Analysis for Circular Notched Plates and Bars Using Fully Plastic Analysis (완전소성해석을 이용한 원형노치 인장시편의 한계하중 및 완전소성응력장 해석)

  • Oh Chang-Kyun;Myung Man-Sik;Kim Yun-Jae;Park Jin-Moo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.12 s.243
    • /
    • pp.1605-1614
    • /
    • 2005
  • For the last four decades, tension test of notched bars has been performed to investigate the effect of stress triaxiality on ductile fracture. To quantify the effect of the notch radius on stress triaxiality, the Bridgman equation is typically used. However, recent works based on detailed finite element analysis have shown that the Bridgman equation is not correct, possibly due to his assumption that strain is constant in the necked ligament. Up to present, no systematic work has been performed on fully plastic stress fields for notched bars in tension. This paper presents fully plastic results for tension of notched bars and plates in plane strain, via finite element limit analysis. The notch radius is systematically varied, covering both un-cracked and cracked cases. Comparison of plastic limit loads with existing solutions shows that existing solutions are accurate for notched plates, but not for notched bars. Accordingly new limit load solutions are given for notched bars. Variations of stress triaxiality with the notch radius and depth are also given, which again indicates that the Bridgman solution for notched bars is not correct and inaccuracy depends on the notch radius and depth.