• Title/Summary/Keyword: Limit Equilibrium Stability Analysis

Search Result 185, Processing Time 0.018 seconds

A Study on Decision of Cut Rock Slope Angle Applied Shear Strength of Continuum Rock Mass Induced from Hoek-Brown Failure Criterion (Hoek-Brown 파괴기준에서 유도된 연속체암반의 전단강도를 적용한 깎기 암반사면 경사 결정 연구)

  • Kim, Hyungmin;Lee, Byokkyu;Woo, Jaegyung;Hur, Ik;Lee, Junki;Lee, Sugon
    • Journal of the Korean GEO-environmental Society
    • /
    • v.20 no.5
    • /
    • pp.13-21
    • /
    • 2019
  • There are many cuts or natural rock slopes that remain stable for a long time in the natural environment with steep slopes ($65^{\circ}$ to $85^{\circ}$). In terms of design practice, the rock mass consisting of similar rock condition and geological structures is defined as a good continuum rock slope, and during the process of decision making angle of this rock slope, it will be important to establish the geotechnical properties estimating method of the continuum rock on the process of stability analysis in the early stages of design and construction. In this study, the stability analysis of a good continuum rock slope that can be designed as a steep slope proposed a practical method of estimating the shear strength by induced from the Hoek-Brown failure criterion, and in addition, the design applicability was evaluated through the stability analysis of steep rock slope. The existing method of estimating the shear strength was inadequate for practical use in the design, as the equivalent M-C shear strength corresponding to the H-B envelope changes sensitively, even with small variations in confining stress. To compensate for this problem, it was proposed to estimate equivalent M-C shear strength by iso-angle division method. To verify the design applicability of the iso-angle division method, the results of the safety factor and the displacement according to the change in angle of the cut slope constructed at the existing working design site were reviewed. The safety factor is FS=16~59 on the 1:0.5 slope, FS=12~52 on the 1:0.3 slope, most of which show a 10~12 percent reduction. Displacement is 0.126 to 0.975 mm on the 1:0.5 slope, 0.152 to 1.158 mm on the 1:0.3 slope, and represents an increase of 10 to 15%. This is a slightly change in normal proportion and is in good condition in terms of stability. In terms practical the working design, it was confirmed that applying the shear strength estimated by Iso-angle division method derived from the H-B failure criterion as a universal shear strength for a good continuum rock mass slope was also able to produce stable and economic results. The procedure for stability analysis using LEM (Limit Equilibrium Analysis Method) and FEM (Finite Element Analysis Method) will also be practical in the rock slope where is not distributed fault. The study was conducted by selecting the slope of study area as a good rock condition, establishing a verification for which it can be applied universal to a various rock conditions will be a research subject later on.

Stability Analysis of Excavation Slope on Soft Ground (연약지반 굴착사면의 안정해석)

  • Kang, Yea Mook;Cho, Jae Hong;Kim, Yong Seong;Kim, Ji Hoon
    • Korean Journal of Agricultural Science
    • /
    • v.23 no.1
    • /
    • pp.25-38
    • /
    • 1996
  • To investigate the stability problem of irrigation-drainage channel excavation slope on soft ground, analyzed the behavior of the soft ground with excavation slope by the limit equilibrium method and the finite element method, and compared with field tests. The results of this study were summarized as follows; 1. When rapid drawdown the water level, the crack was occurred by the effect of the excess pore water pressure, and the pore water pressure was decreased slowly. 2. As the width of excavation was larger, the crack width was larger. And, excavated depth was deeper, the progressive failure was appeared. 3. When the soft ground excavation was small-scale, the minimum safety factor was more effected by cohesion(1.0, 1.5, 2.0, 2.5, 3.0) than excavated slope inclination(1:l, 1:1.5, 1:2). 4. As excavation was progressed, the settlement occurred on the top-slope due to plastic domain, and heaving was occurred at the bottom of excavation. 5. The maximum shear stress was appeared greatly as the base part of slope went down. Because of the increase of the maximum shear stress, tension area occurred and local failure possibility was increased. 6. As the excavation depth was increased, the maximum shear strain was appeared greatly at the base of slope and distribution pattern was concentrated beneath the middle of slope.

  • PDF

A Study on the Failure Cause of Large Scale Rock Slope in Limestone Quarries (석회석 광산에서 발생한 대규모 암반사면의 붕괴원인 분석에 관한 연구)

  • Lee, Sang-Eun;Kim, Hak-Sung;Jang, Yoon-Ho
    • Tunnel and Underground Space
    • /
    • v.24 no.4
    • /
    • pp.255-274
    • /
    • 2014
  • The target of this study is large scale rock slope collapsed by around 7 pm on August, 2012, which is located at ${\bigcirc}{\bigcirc}$ limestone quarries of Gangneung city, Gangwondo. The slope prior to the collapse is formed as the height of about 200 m and the average inclination of $45^{\circ}$. The estimated amount of the collapse is about $1,500,000m^3$ with respect to the slope after the collapse. Geotechnical and field investigations such as boring, geophysical prospecting, surface geological survey, geological lineaments, borehole imaging, metric 3D imaging, experimental and field test, mining work by year, and daily rainfall were performed to find the cause of rock slope failure. Various analyzes using slope mass rating, stereonet projection, limit equilibrium method, continuum and non-continuum model were conducted to check of the stability of the slope. It is expected that the cause of slope failure from the results of various analysis and survey is due to the combined factors such as topography, rainfall, rock type and quality, discontinuities, geo-structural characteristics as the limestone cavity and fault zones, but the failure of slope in case of the analysis without the limestone cavity is not occurred. Safe factor of 0.66 was obtained from continuum analysis of the slope considering the limestone cavity, so the ultimate causes of slope failure is considered to be due to the influence of limestone cavity developed along fault zone.

A Numerical Study on the Estimation of Safety Factor of Tunnels Excavated in Jointed Rock Mass (절리암반 터널의 안전율 평가를 위한 수치 해석적 연구)

  • You, Kwang-Ho;Park, Yeon-Jun;Kang, Yong
    • Tunnel and Underground Space
    • /
    • v.11 no.3
    • /
    • pp.279-288
    • /
    • 2001
  • Jointed rock mass can be analyzed by either continuum model or discontinuum model. Finite element method or finite difference method is mainly used for continuum modelling. Although discontinuum model is very attractive in analyzing the behavior of each block in jointed blocky rock masses, it has shortcomings such that it is difficult to investigate each joint exactly with the present technology and the amount of calculation in computer becomes trio excessive. Moreover, in case of the jointed blocky rock mass which has more than 2 dominant joint sets, it is impossible to model the behavior of each block. Therefore, a model such as ubiquitous joint model theory which assumes the rock mass as a continuum, is required. In the case of tunnels, unlike slopes, it is not easy to obtain safety factor by utilizing analysis method based on limit equilibrium method because it is difficult to assume the shape of failure surface in advance. For this reason, numerical analyses for tunnels have been limited to analyzing stability rather than in calculating the safety factor. In this study, the behavior of a tunnel excavated in jointed rock mass is analyzed numerically by using ubiquitous joint model which can incorporate 2 joint sets and a method to calculate safety factor of the tunnel numerically is presented. To this end, stress reduction technique is adopted.

  • PDF

A Study on Estimating Shear Strength of Continuum Rock Slope (연속체 암반비탈면의 강도정수 산정 연구)

  • Kim, Hyung-Min;Lee, Su-gon;Lee, Byok-Kyu;Woo, Jae-Gyung;Hur, Ik;Lee, Jun-Ki
    • Journal of the Korean Geotechnical Society
    • /
    • v.35 no.5
    • /
    • pp.5-19
    • /
    • 2019
  • Considering the natural phenomenon in which steep slopes ($65^{\circ}{\sim}85^{\circ}$) consisting of rock mass remain stable for decades, slopes steeper than 1:0.5 (the standard of slope angle for blast rock) may be applied in geotechnical conditions which are similar to those above at the design and initial construction stages. In the process of analysing the stability of a good to fair continuum rock slope that can be designed as a steep slope, a general method of estimating rock mass strength properties from design practice perspective was required. Practical and genealized engineering methods of determining the properties of a rock mass are important for a good continuum rock slope that can be designed as a steep slope. The Genealized Hoek-Brown (H-B) failure criterion and GSI (Geological Strength Index), which were revised and supplemented by Hoek et al. (2002), were assessed as rock mass characterization systems fully taking into account the effects of discontinuities, and were widely utilized as a method for calculating equivalent Mohr-Coulomb shear strength (balancing the areas) according to stress changes. The concept of calculating equivalent M-C shear strength according to the change of confining stress range was proposed, and on a slope, the equivalent shear strength changes sensitively with changes in the maximum confining stress (${{\sigma}^{\prime}}_{3max}$ or normal stress), making it difficult to use it in practical design. In this study, the method of estimating the strength properties (an iso-angle division method) that can be applied universally within the maximum confining stress range for a good to fair continuum rock mass slope is proposed by applying the H-B failure criterion. In order to assess the validity and applicability of the proposed method of estimating the shear strength (A), the rock slope, which is a study object, was selected as the type of rock (igneous, metamorphic, sedimentary) on the steep slope near the existing working design site. It is compared and analyzed with the equivalent M-C shear strength (balancing the areas) proposed by Hoek. The equivalent M-C shear strength of the balancing the areas method and iso-angle division method was estimated using the RocLab program (geotechnical properties calculation software based on the H-B failure criterion (2002)) by using the basic data of the laboratory rock triaxial compression test at the existing working design site and the face mapping of discontinuities on the rock slope of study area. The calculated equivalent M-C shear strength of the balancing the areas method was interlinked to show very large or small cohesion and internal friction angles (generally, greater than $45^{\circ}$). The equivalent M-C shear strength of the iso-angle division is in-between the equivalent M-C shear properties of the balancing the areas, and the internal friction angles show a range of $30^{\circ}$ to $42^{\circ}$. We compared and analyzed the shear strength (A) of the iso-angle division method at the study area with the shear strength (B) of the existing working design site with similar or the same grade RMR each other. The application of the proposed iso-angle division method was indirectly evaluated through the results of the stability analysis (limit equilibrium analysis and finite element analysis) applied with these the strength properties. The difference between A and B of the shear strength is about 10%. LEM results (in wet condition) showed that Fs (A) = 14.08~58.22 (average 32.9) and Fs (B) = 18.39~60.04 (average 32.2), which were similar in accordance with the same rock types. As a result of FEM, displacement (A) = 0.13~0.65 mm (average 0.27 mm) and displacement (B) = 0.14~1.07 mm (average 0.37 mm). Using the GSI and Hoek-Brown failure criterion, the significant result could be identified in the application evaluation. Therefore, the strength properties of rock mass estimated by the iso-angle division method could be applied with practical shear strength.