• 제목/요약/키워드: Limestone powder

검색결과 113건 처리시간 0.026초

Study on CO2 Emission Reduction Effects of Using Waste Cementitious Powder as an Alternative Raw Material

  • Park, Dong-Cheon;Kwon, Eun-Hee;Hwang, Jong-Uk;Ahn, Jae-Cheol
    • 한국건축시공학회지
    • /
    • 제14권2호
    • /
    • pp.187-194
    • /
    • 2014
  • With environmental regulations continuously being strengthened internationally the need to control environmental pollution and environmental load is emerging in Korea. The purpose of this study is to seek methods or using waste cementitious powder as an alternative raw material for limestone through the optimization of raw material and to quantitatively analyze the resulting reduction of $CO_2$ emission in order to contribute to solving the issue of waste, which is the biggest issue in relation to construction and global warming. The results of the study, show that waste cementitious powder can be used as an alternative raw material for limestone at OPC level, but it was also found that mixing fine aggregate cementitious powder into waste cementitious powder significantly affected the substitution rate for limestone with waste cementitious powder and the reduction of greenhouse gas. In particular, when fine aggregate cementitious powder was used at a rate of 0~20%, the substitution rate for limestone and the reduction in the rate of greenhouse gas emission was significantly reduced. It is thought that a technique to efficiently separate and discharge the fine aggregate cementitious powder mixed in waste cementitious powder needs to be developed in the future.

실험계획법을 이용한 석회석 시멘트 콘크리트의 최적배합 선정 (Selection of Optimal Mixture of Limestone Cement Paste by Using the Design of Experiment)

  • 김건우;김진만;최선미;김범수
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2021년도 가을 학술논문 발표대회
    • /
    • pp.107-108
    • /
    • 2021
  • In the global trend of countries around the world announcing the declaration of carbon neutrality, the development of low-carbon cement in the cement industry can be seen as a very important issue that can determine the future development of the cement industry in the future. Therefore, this study evaluated the strength characteristics of limestone cement paste with limestone powder of CaCO3 and refinery desulfurization waste catalyst of high Al2O3 content, and using a Minitab mixture design to optimize a limestone cement content. As a resuls it was confirmed that limestone cement paste with 5-10% of limestone powder and 1.25-2.5% of the waste catalyst exhibits similar compressive strength to that of OPC.

  • PDF

Evaluation of mathematical models for prediction of slump, compressive strength and durability of concrete with limestone powder

  • Bazrafkan, Aryan;Habibi, Alireza;Sayari, Arash
    • Advances in concrete construction
    • /
    • 제10권6호
    • /
    • pp.463-478
    • /
    • 2020
  • Multiple mathematical modeling for prediction of slump, compressive strength and depth of water penetration at 28 days were performed using statistical analysis for the concrete containing waste limestone powder as partial replacement of sand obtained from experimental program reported in this research. To extract experimental data, 180 concrete cubic samples with 20 different mix designs were investigated. The twenty non-linear regression models were used to predict each of the concrete properties including slump, compressive strength and water depth penetration of concrete with waste limestone powder. Evaluation of the models using numerical methods showed that the majority of models give acceptable prediction with a high accuracy and trivial error rates. The 15-term regression models for predicting the slump, compressive strength and water depth were found to have the best agreement with the tested concrete specimens.

석회석 미분말 혼입량과 분말도가 콘크리트의 고온 역학적 특성에 미치는 영향 (Effect of limestone powder replacement ratio and fineness on high temperature mechanical properties of concrete )

  • 최윤성;김규용;유하민;이예찬;서동균;남정수
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2023년도 가을학술발표대회논문집
    • /
    • pp.271-272
    • /
    • 2023
  • In this study, limestone powder used to replace cement at a weight ratio of 10%, 15%, and 20% was tested at 3000, 4000, and 5000 levels of fineness. The mechanical properties of the concrete were investigated before and after exposure to high temperatures (100, 300, and 500℃), and the effects of limestone powder fineness and replacement ratio on the mechanical properties of the concrete were analyzed.

  • PDF

저탄소 그린콘크리트의 물리·역학적 특성 (Physical and Mechanical Properties of Low Carbon Green Concrete)

  • 조일호;성찬용
    • 한국농공학회논문집
    • /
    • 제55권3호
    • /
    • pp.123-128
    • /
    • 2013
  • This study was performed to evaluate the slump flow, air content, setting time, compressive strength, adiabatic temperature rise and diffusion coefficient of chloride used ordinary portland cement, crushed coarse aggregate, crushed sand, river sand, fly ash, limestone powder, blast furnace slag powder and superplasticizer to find optimum mix design of low carbon green concrete for structures. The performances of low carbon green concrete used fly ash, limestone powder and blast furnace slag powder were remarkably improved. This fact is expected to have economical effects in the manufacture of low carbon green concrete for structures. Accordingly, the fly ash, limestone powder and blast furnace slag powder can be used for low carbon green concrete material.

저탄소 그린콘크리트의 내구 특성 (Durability Properties of Low Carbon Green Concrete)

  • 조일호;성찬용
    • 한국농공학회논문집
    • /
    • 제55권6호
    • /
    • pp.11-17
    • /
    • 2013
  • This study was performed to evaluate the chlorine ion penetration resistance, chemical resistance and freezing and thawing resistance used ordinary portland cement, crushed coarse aggregate, crushed sand, river sand, fly ash, limestone powder, blast furance slag powder and superplasticizer to find optimum mix design of low carbon green concrete for structures. The performance of low carbon green concrete used fly ash, limestone powder and blast furnace slag powder were remarkably improved. This fact is expected to have economical effects in the manufacture of low carbon green concrete for offshore structures. Accordingly, the fly ash, limestone powder and blast furnace slag powder can be used for offshore structure materials.

석회석 미분말 혼합재의 화학특성이 혼합시멘트 유동성과 강도에 미치는 영향 (The Effect of Limestone Powder Admixture Chemical Properties on Workability and Compressive Strength of Composite Cement)

  • 서동균;유병노;최재원;김경석;우지완
    • 시멘트 심포지엄
    • /
    • 통권49호
    • /
    • pp.29-30
    • /
    • 2022
  • 기후 문제의 심각성이 대두되면서 탄소중립에 세계적인 관심이 커지고 있다. 석회석 미분말은 충전재로써 시멘트 혼합재로 사용할 경우 긍정적인 효과를 얻을 수 있을 것으로 기대된다. 본 연구에서는 석회석 미분말 혼합재의 화학특성이 모르타르 플로우와 압축강도에 미치는 영향을 평가하려고 한다. 결과적으로 모든 석회석 종류와 치환량 수준에서 OPC 수준의 강도보다 저하하는 경향을 나타내었지만 석회석 혼합재를 사용할 경우 유동성이 향상되는 것을 확인하였다. 추후 석회석 시멘트의 단위수량 저감 효과를 이용해 강도 저하를 개선하는 연구를 진행할 계획이다.

  • PDF

Analysis on Calcination of Cementitious Powder of Waste Concrete for Raw Cement

  • Park, Dong-Cheon;Kwon, Eun-Hee;Ahn, Jae-Cheol
    • 한국건축시공학회지
    • /
    • 제14권1호
    • /
    • pp.54-60
    • /
    • 2014
  • The purpose of this study is to examine whether cementitious powder separated from waste concrete can be used as an alternative raw material to limestone and reduce the usage of natural resource (limestone) and $CO_2$ emission based on recycling cementitious powder from waste concrete. Experiments actually analyzed the chemical composition of cementitious powder and performed hyperthermia analysis, measurement of free CaO and XRD analysis to measure the degree of recovery of hydration in the model of cementitious powder manufactured based on chemical composition. These were performed in each cementitious powder model at different calcination temperatures such as $900^{\circ}C$, $1200^{\circ}C$, $1300^{\circ}C$, $1400^{\circ}C$ and $1450^{\circ}C$. Through the experiments, it was found that the recovery of hydration was at a level which can be used as the alternative raw material for limestone, but the replacement ratio was directly affected by the degree of mixing of fine aggregate in less than $150{\mu}m$, which cannot be separated from cementitious powder. It was shown that there was no difference in the production of compounds involved in hydration at calcination temperatures of $1200^{\circ}C$ or higher. Therefore, to pursue the replacement of limestone and reduction of greenhouse gas by recycling cementitious powder, the development of technology to efficiently separate aggregate fine powder is required.

석회석 미분말을 활용한 보통강도 고유동 콘크리트의 염소이온 침투특성 (Chloride Ion Penetration Properties of Normal Strength High-Fluidity Concrete Using Lime Stone Powder)

  • 최연왕;문재흠;엄주한
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제14권4호
    • /
    • pp.160-168
    • /
    • 2010
  • 최근 고유동 콘크리트(High Fluidity Concrete 이하 HFC)에 대한 연구는 많은 시공사례와 함께 진행되고 있지만, 콘크리트의 내구성능을 평가하는 항목 중 하나인 염소이온 침투에 대한 연구는 미비하며, 기존의 내구성관련 연구는 고강도 이상(40MPa)연구됨에 따라 보통강도 고유동 콘크리트의 염소이온 침투에 관한 연구는 찾아보기 어려운 실정이다. 따라서 본 연구에서는 석회석 미분말을 혼합한 보통강도 HFC를 제조하여 콘크리트의 공극구조 및 염소이온 침투특성을 분석 고찰하였다. 실험결과 석회석 미분말을 혼합한 2성분계 및 3성분계 고유동 콘크리트의 경우 콘크리트의 공극 크기는 0.005~0.05 ${\mu}m$ 사이에서 가장 많이 분포하고 있으며, 석회석 미분말의 혼합률이 증가할수록 평균 공극 직경은 커지는 것으로 나타났다. 또한 석회석 미분말의 혼합률이 증가할수록 염소이온 침투깊이 및 확산계수는 증가하는 경향이 나타나며, 확산계수는 압축강도 및 평균공극직경 사이의 상관관계에서 결정계수 0.90 이상의 양호한 상관성이 있었다.

매스콘크리트 벽체에서 콘크리트 응결 특성과 측압과의 관계 (Relation of Concrete Setting Characteristic and Lateral Pressure in Mass Concrete Wall)

  • 박찬규;유재현;백승준;정재홍;진용만
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2001년도 가을 학술발표회 논문집
    • /
    • pp.935-938
    • /
    • 2001
  • This paper reports the relation of concrete setting characteristic and lateral pressure in mass concrete wall such as side wall of LNG underground storage tank. In order to estimate the lateral pressure, initial setting time of low heat cement concrete with type of mineral admixture was measured for three concrete mixtures(W/P=41.6%) containing limestone powder, fly ash, and slag powder. As a result, the lateral pressure of the concrete containing limestone powder was the smallest than those of other concretes as well as the initial setting time.

  • PDF