• Title/Summary/Keyword: Lime powder

Search Result 98, Processing Time 0.041 seconds

A Study on the Waste Treatment from a Nuclear Fuel Powder Conversion Plant (핵연료 분말제조 공정에서 발생하는 폐액의 처리에 관한 연구)

  • Jeong, Kyung-Chai;Kim, Tae-Joon;Choi, Jong-Hyun;Park, Jin-Ho;Hwang, Seong-Tae
    • Applied Chemistry for Engineering
    • /
    • v.7 no.6
    • /
    • pp.1164-1173
    • /
    • 1996
  • Treating methods and characteristics of waste from a nuclear fuel powder conversion plant were studied. To recovery or treat a trace uranium in liquid waste, the ammonium uranyl carbonate(AUC) filtrate must be heated for $CO_2$ expelling, essentially. Uranium content of final treated waste solution from fuel powder processes for a heavy water reactor(HWR) could be lowered to 1 ppm by the lime treatment after the ammonium di-uranate(ADU) precipitation by simple heating. Otherwise, in case of the waste from fuel powder processes for a pressurized light water reactor(PWR), it is result in 0.8 ppm as a form of uranium peroxide such as $UO_4{\cdot}2NH_4F$ compounds. Optimum condition was found at $101^{\circ}C$ by the simple heating method in case of HWR powder process waste. And in case of PWR powder process waste, optimum condition could be obtained by precipitating with adding hydrogen peroxide and adjusting at pH 9.5 with ammonia gas at $60^{\circ}C$ after heating the waste In order to expelling $CO_2$. As the characteristics of recovered uranium compounds, median particle size of ADU was increased with pH increasing in case of HWP waste. Also, in case of uranium proxide compound recovered from PWR waste, the property of $U_3O_8$ power obtained after thermal treatment in air atmosphere was similar to that of the powder prepared from AUC conversion plant.

  • PDF

A Development of Recycled Glass Powder using Asphalt Concrete Filler and Evaluation of Practical Use at the Field (아스콘 채움재용 폐유리 미분말 개발 및 현장 적용 평가)

  • Ryu, Deug-Hyun;Jeon, Jun-Young;Jo, Shin-Haeng;Jun, Soon-Je
    • 한국방재학회:학술대회논문집
    • /
    • 2007.02a
    • /
    • pp.113-116
    • /
    • 2007
  • This is a research for evaluated recycled glass powder to add asphalt concrete filler. To make a comparative study, Mechanical performance of lime stone and slag dust Mixtures was evaluated according to test procedure. Lab. performance tests included marshall stability, indirect tensile strength, resilient modulus and wheel tracking. Water resistance tests were evaluated by marshall strength ratio and tensile strength ratio. In conclusion, Results of mechanical performance showed that recycled glass powder mixtures were equivalent to conventional mixtures. Especially, result of tensile strength ratio tested recycled glass powder mixtures was superior to conventional mixtures.

  • PDF

Effects of Fruit Surface Spray of Lime Fertilizer on the Mineral Content of Fruit Skin and Quality in 'Campbell Early' Grapes (석회비료 과면살포에 따른 포도 '캠벨얼리' 과피의 무기성분 함량 및 과실 품질에 미치는 영향)

  • Lee, Young Cheul;Moon, Byung Woo;Kim, Ho Young
    • Journal of Practical Agriculture & Fisheries Research
    • /
    • v.7 no.1
    • /
    • pp.81-89
    • /
    • 2005
  • The experiment was conducted to evaluate the effect of fruit skin spray of the lime fertilizer in 'Campbell Early' grapes. The T-N, P, K, Ca and Mg of fruit skin and cluster weight, berry weight, cluster length showed no difference between control and lime fertilizer. But soluble solids in fruit was reduced by fruit skin spray of liquid calcium fertilizer extracted from oyster shell after bagging(LCaB). The anthocyanin content of fruit skin was decreased by air-slaked lime(HCa) and LCaB treatment. Also, occurrence of fruit skin bloom was significantly reduced by HCa and oyster shell powder(OS-CaP) treatment. The berry firmness was significantly increased through liquid calcium fertilizer extracted from oyster shell(LCa) and HCa treatment. Conspicuously, berry elasticity was rather decreased by OS-CaP treatment. However, there was no difference of weight loss of fruit among treatments during room temperature storage.

Fabrication of the Acceleration Sensor Body of Glass by Powder Blasting (미립분사가공을 이용한 유리 소재의 가속도 센서 구조물 성형)

  • Park, Dong-Sam;Kang, Dae-Kyu;Kim, Jeong-Keun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.2 s.179
    • /
    • pp.146-153
    • /
    • 2006
  • Acceleration sensors have widely been used in the various fields of industry. In recent years, micromachining accelerometers have been developed and commercialized by the micromachining technique or MEMS technique. Typical structure of such sensors consist of a cantilever beam and a vibrating mass fabricated on Si wafers using etching. This study investigates the feasibility of powder blasting technique for microfabrication of sensor structures made of the pyrex glass alternating the existing Si based acceleration sensor. First, as preliminary experiment, effect of blasting pressure, mass flow rate of abrasive and no. of nozzle scanning on erosion depth of pyrex and soda lime glass is studied. Then the optimal blasting conditions are chosen for pyrex sensor. Structure dimensions of designed glass sensor are 2.9mm and 0.7mm for the cantilever beam length and width and 1.7mm for the side of square mass. Mask material is from aluminium sheet of 0.5mm in thickness. Machining results showed that tolerance errors of basic dimensions of glass sensor ranged from 3um in minimum to 20um in maximum. This results imply the powder blasting can be applied for micromachining of glass acceleration sensors alternating the exiting Si based sensors.

High Xe-content PDP

  • Oversluizen, G.;Dekker, T.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.55-58
    • /
    • 2004
  • High Xe-content PDP characteristics are discussed. A high efficacy, up to 5 lm/W for a 50% Xe in Ne gas mixture, is realized in 4-inch color PDP test panel designs with low cost stripe-type barrier rib structures, that are powder blasted in soda lime glass. Furthermore, for a high Xe-content a high luminance can be obtained with a relatively small electrode area. Therefore the inter cell gap and the driving margin can be increased in a stripe-type barrier rib structure. Finally, for a high Xe-content the panel lifetime increases, due to increasing luminance and firing voltage stability. Clearly, these findings may direct the design development for next generation PDPs towards a high Xe-content

  • PDF

A Study on the Sound Characteristic of Insulation and Manufacturing of Lightweight Concrete for Wall System (벽체용 경량 콘크리트의 제조 및 흡차음 특성에 관한 연구)

  • Kim, Hong-Yong;Kim, Soon-Ho
    • KIEAE Journal
    • /
    • v.6 no.1
    • /
    • pp.11-16
    • /
    • 2006
  • This paper deals with the experimental for manufacturing the lightweight buildng materials with portland cement, fly ash, slag, lime, gypsum, and aluminum powder system. Aluminum powder was added an aerating agent. Specific gravity range of lightweight concrete specimens were 0.6~0.9g/cm3. These specimens properties studied by means of specific gravity, compressive strength, absorption coefficient, transmission loss and scanning electron microscopy. Cellular concrete with maximum compressive strength was 41kgf/cm2 by obtained Al=0.05wt.%. Moreover, the aeration lightweight concrete showed excellent sound absorption properties.

Comparative Analysis of Various Industrial By-Products Pozzolanic Activity (다양한 산업부산물들의 포졸란 반응성 비교분석)

  • Choi, Ik-Je;Kim, Ji-Hyun;Chung, Chul-Woo;Lee, Soo-Yong
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2016.05a
    • /
    • pp.32-33
    • /
    • 2016
  • In this work, pozzolanic activities of various waste materials were compared with those of well-known pozzolanic materials. Uncondensed and densified silica fume, two ASTM class F fly ashes with different calcium contents, and bentonite powder, ceramic powder obtained from wash basin, and waste glass wool, which can possibly possess pozzolanic property were chosen for comparison. Drop in electrical conductivity at 40℃ saturated lime solution was measured for each materials. The amount of Ca(OH)2 decomposed from cement paste at 450~500℃ was also measured used to evaluate pozzolanic activity. The 28 day compressive strength were used to observe the mechanical property enhanced by various waste materials.

  • PDF

Improvement of Strength Characteristics in ALC added Silica Powder and Gypsum (규석 분말 및 석고 혼입에 따른 경량기포콘크리트의 강도특성 개선)

  • Song, Hun;Chu, Yong-Sik;Lee, Jong-Kyu
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.7 no.4
    • /
    • pp.128-135
    • /
    • 2012
  • Autoclaved lightweight concrete, also known as autoclaved aerated concrete(AAC) or autoclaved cellular concrete (ACC), is made with fine silica powder, quik lime, cement, and an Al powder. ALC contains 70~80% air. The lightweight material offers excellent sound and thermal insulation, and like all cement-based materials, is strong and fire resistant. However, ALC have high water absorption, low compressive strength and popout the origin of the low surface strength in its properties. These properties make troubles under construction such as cracking and popout. Thus, this study is to improve the fundamental strength by controls of increasing of admixtures, gypsum and silica powder size. Admixtures make use of metakaolin and silica fume. From the test result, the ALC using admixture have a good fundamental properties compared with plain ALC. Compressive strength, specific strength and abrasion's ratio were improved depending on increasing admixtures ratio's, gypsum and silica powder size.

  • PDF

Properties of High Volume Blast Furnace Slag Concrete using Recycled Aggregate with Incineration Waste Ash (소각장애시의 치환에 따른 고로슬래그 미분말 다량치환 순환골재 콘크리트의 특성)

  • Han, Cheon-Goo;Lee, Hyang-Jae;Kim, Jun-Ho
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.1 no.2
    • /
    • pp.107-113
    • /
    • 2013
  • This study is the study desiring to solve the problem by utilizing the kinds of recycled resources considered to be troubled complementarily. Namely the reaction of potential hydraulicity of Blast Furnace Slag Powder (BS) shall be reacted with the alkali of Recycled Fine Aggregates Coarse Aggregate, it has been experimented to obtain the optimum value with the replacement ratio of incineration plant ash (WA) treated with the slaked lime as the experiment variable by solving the alkali of shortage with the Ordinary Portland Cement (OPC). As a result, the liquidity and the air volume are declined slightly as the replacement ratio of incineration plant ash WA increases, the mixture of incineration plant ash WA 1% has been analyzed to be the most suitable considering the viewpoint of effective handling of waste as the compression and the tensile strength showed the maximum value before and after 1% even though it was disadvantageous with the increase of chloride content.

A Study on the Factors Affecting the Strength of Alkali-Activated Slag Binders (알칼리 활성화 슬래그 결합재의 강도 발현 인자에 관한 연구)

  • Hwang, Byoung-Il;Kang, Suk-Pyo;Kim, Sang-Jun
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.6 no.2
    • /
    • pp.130-137
    • /
    • 2018
  • In the construction industry, research on alkali activated cement using fly ash or blast furnace slag fine powder has been published in Korea and abroad as a way to reuse industrial byproducts without using cement at all and to obtain economical effects at the same time. the purpose of this paper is to evaluate the effect of the ratio and coefficient of hydration ratio and lime saturation degree on the strength of alkali activated slag cement by chemical quantitative analysis of alkali activated slag cement used in the management of existing portland cement. as a result, it was confirmed that the ratio and coefficient of hydration ratio and lime saturation are all within a certain range.