• Title/Summary/Keyword: Lightweight process

Search Result 476, Processing Time 0.023 seconds

Properties of Fireproof Mortar Using Lightweight Fine Aggregate Using Air Cooling Process Bottom Ash (건식공정 바텀애시 경량 잔골재를 사용한 내화모르타르의 특성)

  • Kim, Myung-Hoon;Namkoong, Yeon
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2016.05a
    • /
    • pp.225-226
    • /
    • 2016
  • Bottom ash generated in thermoelectric power plants could be used as substitutional fine aggregate such as pearlite of fireproof mortar due to its lightweight and porosity. Development of substitutional materials is necessary because pearlite has several problems such as production of carbon dioxide during manufacturing process and high price. This study is to confirm the possibility of air cooling process bottom ash for fireproof mortar as substitutional material of pearlite through basic experiment.

  • PDF

Assessment of CO2 Emissions of Eco-friendly Lightweight Form in the Construction Process (시공단계에서의 친환경 경량 거푸집 탄소배출량 평가)

  • Kang, Sin Hun;Ahn, Hee-Jae;Lee, Chang-Su;Lee, Dongmin;Cho, Hunhee;Kang, Kyung-In
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2019.11a
    • /
    • pp.10-11
    • /
    • 2019
  • The purpose of this study is to validate the environmental performance of the 'eco-friendly lightweight form' in the construction process. Unlike existing euro form and aluminum form, the proposed form does not require form oil during the process of concrete casting and is lightweight because it is made of engineering plastic. Therefore, eco-friendly lightweight form will reduce the $CO_2$ emissions in the construction process. To verify the hypothesis, the study compared existing forms and eco-friendly light weight form's $CO_2$ emissions in each stage in construction process when using 1,000 forms and 100 times from the LCI(Life Cycle Inventory) data. The total $CO_2$ emissions of the eco-friendly light weight form were 30,487kg $CO_2$, which equated to about 58% and 20% less emissions than the euroform and aluminum form. The result of the study verified that the eco-friendly lightweight form was effectively reduced $CO_2$ emission in the construction process.

  • PDF

NIST Lightweight Cryptography Standardization Process: Classification of Second Round Candidates, Open Challenges, and Recommendations

  • Gookyi, Dennis Agyemanh Nana;Kanda, Guard;Ryoo, Kwangki
    • Journal of Information Processing Systems
    • /
    • v.17 no.2
    • /
    • pp.253-270
    • /
    • 2021
  • In January 2013, the National Institute of Standards and Technology (NIST) announced the CAESAR (Competition for Authenticated Encryption: Security, Applicability, and Robustness) contest to identify authenticated ciphers that are suitable for a wide range of applications. A total of 57 submissions made it into the first round of the competition out of which 6 were announced as winners in March 2019. In the process of the competition, NIST realized that most of the authenticated ciphers submitted were not suitable for resource-constrained devices used as end nodes in the Internet-of-Things (IoT) platform. For that matter, the NIST Lightweight Cryptography Standardization Process was set up to identify authenticated encryption and hashing algorithms for IoT devices. The call for submissions was initiated in 2018 and in April 2019, 56 submissions made it into the first round of the competition. In August 2019, 32 out of the 56 submissions were selected for the second round which is due to end in the year 2021. This work surveys the 32 authenticated encryption schemes that made it into the second round of the NIST lightweight cryptography standardization process. The paper presents an easy-to-understand comparative overview of the recommended parameters, primitives, mode of operation, features, security parameter, and hardware/software performance of the 32 candidate algorithms. The paper goes further by discussing the challenges of the Lightweight Cryptography Standardization Process and provides some suitable recommendations.

A Study on Optimization of Board Molding Process with GMPU Technology (GMPU 공법을 이용한 보드 성형 공정 최적화 연구)

  • Choi, Dong-Jo;Park, Hong-Seok
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.26 no.3
    • /
    • pp.81-87
    • /
    • 2009
  • Lightweight board has been used for manufacturing various fields of automotive interior trims for years. The GMPU board was constructed with glass fiber mat, honeycomb and polyurethane foamed using polyol and isocyanate materials which were sprayed by robot that is interlocked foaming machine. For more lightweight and cost reduction this paper shows how to optimize GMPU process parameters that related to foaming condition, robot position and robot velocity for polyurethane weight. The results show that flexural strength and modulus of board's specimens were evaluated by robot velocity and moving pattern. Based on that, a innovative process was developed for more lightweight and cost reduction.

Development of Automotive Lower Ann using Hybrid Manufacturing Process (하이브리드 제조공정을 이용한 자동차 로어암의 개발)

  • So, Sang-Woo;Hwang, Hyun-Tae;Lee, Jong-Hyun;Choi, Hung-Won
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.20 no.2
    • /
    • pp.214-218
    • /
    • 2011
  • In order to survive in turbulent and competitive markets, automotive part manufacturers try efforts to develop new manufacturing technologies for ultra-lightweight, high-intensity and environmentally-friendly parts. Most of front lower arm is manufactured by welding process between upper- and lower panel which are produced by press stamping process. Because lower arm mounted on the cross member parts is one of the important complementary parts. So, to improve safety and lightweight of these parts, hybrid technologies are used in this paper. As hybrid technologies are applied to be front sub-frame, rear cross member and other chassis parts as well as front lower arm, the 20% lightweight has been achieved compared with existing steel parts.

Optimization of Kiln Process Parameters of Low-Temperature Sintering Lightweight Aggregate by Response Surface Analysis (반응표면분석법에 따른 저온소성 경량골재의 킬른공정변수 최적화)

  • Lee, Han-Baek;Seo, Chee-Ho
    • Journal of the Korean Ceramic Society
    • /
    • v.47 no.5
    • /
    • pp.365-372
    • /
    • 2010
  • This paper was to evaluate the influence of kiln process parameter(kiln angle, kiln rotating speed) of lightweight aggregate using waste glass and bottom ash with industrial by-products on thermal conductivity, density, water absorption, fracture load and porosity by response surface analysis. In the results of surface plot and contour plot, it has verified that kiln residence time of lightweight aggregate increase as kiln angle and rotating speed decreases. For this reason, pore size and quantity tend to increase by active reaction of forming agent. It seems to be that increase in pore size and quantity have caused decreasing density, fracture load and thermal conductivity, and increasing water absorption. In conclusion, optimization of kiln process parameter on thermal conductivity, density, water absorption, fracture load and porosity by response surface analysis are kiln angle 2.4646%, kiln rotating speed 40.7089 rpm.

Mechanical fastening and joining technologies to using multi mixed materials of car body (차체 소재 다변화에 따른 체결 및 접합기술)

  • Kim, Yong;Park, Ki-Young;Kwak, Sung-Bok
    • Journal of Welding and Joining
    • /
    • v.33 no.3
    • /
    • pp.12-18
    • /
    • 2015
  • The ultimate goal of developing body is revealed the "lightweight" at latest EuroCarBody conference 2012 and the most core technology is joining process to make lightweight car body design. Accordingly, in this study, the car body assembly line for the assembly process applies to any introduction, particularly in the assembly of aluminum alloy and composite materials applied by the process for the introductory approached. Process were largely classified by welding (laser, arc, resistance, and friction stir welding), bonding (epoxy bonding) and mechanical fastening (FDS, SPR, Bolting and clinching). Applications for each process issues in the case and the applicable award was presented, based on the absolute strength of the test specimens and joining characteristics for comparative analysis were summarized. Finally, through this paper, we would tried to establish the characteristics of the joint for lightweight structure.

Lightweight Optimization of Infant Pop-up Seat Frame Using DMTO in Static Condition (DMTO 기법을 활용한 정적 하중환경의 유아용 팝업시트 프레임의 경량화)

  • Hong, Seung Pyo;Cha, Seung Min;Shin, Dong Seok;Jeon, Euy Sik
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.21 no.1
    • /
    • pp.102-110
    • /
    • 2022
  • This paper proposes a solution to the problems of manufacturing cost and processability by applying discrete material and thickness optimization (DMTO) and minimizing the use of high-strength, lightweight materials in the optimization process. A simple infant pop-up seat model was selected as the application target, and the weight reduction effect and variation in strength according to the optimization results were observed. In this study, a simplified finite element model of an infant pop-up seat frame was first constructed. The model was used to perform a static structural analysis to verify the weight and strength of each part. The D-optimal design of the experimental method was then used to observe the influence of each part on the weight and strength. This process was applied using discrete thickness optimization (DTO) (which applies high-strength, lightweight materials and optimizes only the thickness) and DMTO (which considers both the material and thickness). The DTO and DMTO results were compared to verify the design method that determines the major parts and simultaneously considers the material and thickness. Accordingly, in this study, an optimal lightweight design that satisfied the strength standards of the seat frame was derived. Furthermore, discretization parameters were used to minimize the application of high-strength, lightweight materials.

Experimental & computational study on fly ash and kaolin based synthetic lightweight aggregate

  • Ipek, Suleyman;Mermerdas, Kasim
    • Computers and Concrete
    • /
    • v.26 no.4
    • /
    • pp.327-342
    • /
    • 2020
  • The objective of this study is to manufacture environmentally-friendly synthetic lightweight aggregates that may be used in the structural lightweight concrete production. The cold-bonding pelletization process has been used in the agglomeration of the pozzolanic materials to achieve these synthetic lightweight aggregates. In this context, it was aimed to recycle the waste fly ash by employing it in the manufacturing process as the major cementitious component. According to the well-known facts reported in the literature, it is stated that the main disadvantage of the synthetic lightweight aggregate produced by applying the cold-bonding pelletization technique to the pozzolanic materials is that it has a lower strength in comparison with the natural aggregate. Therefore, in this study, the metakaolin made of high purity kaolin and calcined kaolin obtained from impure kaolin have been employed at particular contents in the synthetic lightweight aggregate manufacturing as a cementitious material to enhance the particle crushing strength. Additionally, to propose a curing condition for practical attempts, different curing conditions were designated and their influences on the characteristics of the synthetic lightweight aggregates were investigated. Three substantial features of the aggregates, specific gravity, water absorption capacity, and particle crushing strength, were measured at the end of 28-day adopted curing conditions. Observed that the incorporation of thermally treated kaolin significantly influenced the crushing strength and water absorption of the aggregates. The statistical evaluation indicated that the investigated properties of the synthetic lightweight aggregate were affected by the thermally treated kaolin content more than the kaoline type and curing regime. Utilizing the thermally treated kaolin in the synthetic aggregate manufacturing lead to a more than 40% increase in the crushing strength of the pellets in all curing regimes. Moreover, two numerical formulations having high estimation capacity have been developed to predict the crushing strength of such types of aggregates by using soft-computing techniques: gene expression programming and artificial neural networks. The R-squared values, indicating the estimation performance of the models, of approximately 0.97 and 0.98 were achieved for the numerical formulations generated by using gene expression programming and artificial neural networks techniques, respectively.

Density and Absorption Properties of the Lightweight Material According to the addition ratio of the Powdery and Liquid Type Modified Sulfur (분말형 및 액상형 개질유황의 첨가율에 따른 경량체의 밀도 및 흡수율 특성)

  • Lee, Yong;Kim, Heon-Tae;Bae, Kee-Sun;Lee, Sang-Soo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2015.05a
    • /
    • pp.158-159
    • /
    • 2015
  • Worldwide refinery industry is a large amount of sulfur is produced by development. what that sulfur, it is produced through the desulfurization process and sulfur recover process. And it is made with the liquid state or solid-state. Also, the trend for structure is being changed from wall construction to rhamen construction. The amount of lightweight panels uesd in rhamen construction is also increasing. Therefore, In this study, it is intended to study density and absorption rate of the blast furnace slag lightweight material by using a sulfur lowered melting point. The plain has highest density and the density is lower when adding modified sulfur more. The plain has the lowest absorption and the absorption is higher according to adding modified sulfur more.

  • PDF