• Title/Summary/Keyword: Lightweight Deep Learning

Search Result 75, Processing Time 0.038 seconds

Research on Driving Pattern Analysis Techniques Using Contrastive Learning Methods (대조학습 방법을 이용한 주행패턴 분석 기법 연구)

  • Hoe Jun Jeong;Seung Ha Kim;Joon Hee Kim;Jang Woo Kwon
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.23 no.1
    • /
    • pp.182-196
    • /
    • 2024
  • This study introduces driving pattern analysis and change detection methods using smartphone sensors, based on contrastive learning. These methods characterize driving patterns without labeled data, allowing accurate classification with minimal labeling. In addition, they are robust to domain changes, such as different vehicle types. The study also examined the applicability of these methods to smartphones by comparing them with six lightweight deep-learning models. This comparison supported the development of smartphone-based driving pattern analysis and assistance systems, utilizing smartphone sensors and contrastive learning to enhance driving safety and efficiency while reducing the need for extensive labeled data. This research offers a promising avenue for addressing contemporary transportation challenges and advancing intelligent transportation systems.

Implementation of Urinalysis Service Application based on MobileNetV3 (MobileNetV3 기반 요검사 서비스 어플리케이션 구현)

  • Gi-Jo Park;Seung-Hwan Choi;Kyung-Seok Kim
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.23 no.4
    • /
    • pp.41-46
    • /
    • 2023
  • Human urine is a process of excreting waste products in the blood, and it is easy to collect and contains various substances. Urinalysis is used to check for diseases, health conditions, and urinary tract infections. There are three methods of urinalysis: physical property test, chemical test, and microscopic test, and chemical test results can be easily confirmed using urine test strips. A variety of items can be tested on the urine test strip, through which various diseases can be identified. Recently, with the spread of smart phones, research on reading urine test strips using smart phones is being conducted. There is a method of detecting and reading the color change of a urine test strip using a smartphone. This method uses the RGB values and the color difference formula to discriminate. However, there is a problem in that accuracy is lowered due to various environmental factors. This paper applies a deep learning model to solve this problem. In particular, color discrimination of a urine test strip is improved in a smartphone using a lightweight CNN (Convolutional Neural Networks) model. CNN is a useful model for image recognition and pattern finding, and a lightweight version is also available. Through this, it is possible to operate a deep learning model on a smartphone and extract accurate urine test results. Urine test strips were taken in various environments to prepare deep learning model training images, and a urine test service application was designed using MobileNet V3.

Comparative Analysis of CNN Deep Learning Model Performance Based on Quantification Application for High-Speed Marine Object Classification (고속 해상 객체 분류를 위한 양자화 적용 기반 CNN 딥러닝 모델 성능 비교 분석)

  • Lee, Seong-Ju;Lee, Hyo-Chan;Song, Hyun-Hak;Jeon, Ho-Seok;Im, Tae-ho
    • Journal of Internet Computing and Services
    • /
    • v.22 no.2
    • /
    • pp.59-68
    • /
    • 2021
  • As artificial intelligence(AI) technologies, which have made rapid growth recently, began to be applied to the marine environment such as ships, there have been active researches on the application of CNN-based models specialized for digital videos. In E-Navigation service, which is combined with various technologies to detect floating objects of clash risk to reduce human errors and prevent fires inside ships, real-time processing is of huge importance. More functions added, however, mean a need for high-performance processes, which raises prices and poses a cost burden on shipowners. This study thus set out to propose a method capable of processing information at a high rate while maintaining the accuracy by applying Quantization techniques of a deep learning model. First, videos were pre-processed fit for the detection of floating matters in the sea to ensure the efficient transmission of video data to the deep learning entry. Secondly, the quantization technique, one of lightweight techniques for a deep learning model, was applied to reduce the usage rate of memory and increase the processing speed. Finally, the proposed deep learning model to which video pre-processing and quantization were applied was applied to various embedded boards to measure its accuracy and processing speed and test its performance. The proposed method was able to reduce the usage of memory capacity four times and improve the processing speed about four to five times while maintaining the old accuracy of recognition.

Compression of DNN Integer Weight using Video Encoder (비디오 인코더를 통한 딥러닝 모델의 정수 가중치 압축)

  • Kim, Seunghwan;Ryu, Eun-Seok
    • Journal of Broadcast Engineering
    • /
    • v.26 no.6
    • /
    • pp.778-789
    • /
    • 2021
  • Recently, various lightweight methods for using Convolutional Neural Network(CNN) models in mobile devices have emerged. Weight quantization, which lowers bit precision of weights, is a lightweight method that enables a model to be used through integer calculation in a mobile environment where GPU acceleration is unable. Weight quantization has already been used in various models as a lightweight method to reduce computational complexity and model size with a small loss of accuracy. Considering the size of memory and computing speed as well as the storage size of the device and the limited network environment, this paper proposes a method of compressing integer weights after quantization using a video codec as a method. To verify the performance of the proposed method, experiments were conducted on VGG16, Resnet50, and Resnet18 models trained with ImageNet and Places365 datasets. As a result, loss of accuracy less than 2% and high compression efficiency were achieved in various models. In addition, as a result of comparison with similar compression methods, it was verified that the compression efficiency was more than doubled.

Pixel-Wise Polynomial Estimation Model for Low-Light Image Enhancement

  • Muhammad Tahir Rasheed;Daming Shi
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.9
    • /
    • pp.2483-2504
    • /
    • 2023
  • Most existing low-light enhancement algorithms either use a large number of training parameters or lack generalization to real-world scenarios. This paper presents a novel lightweight and robust pixel-wise polynomial approximation-based deep network for low-light image enhancement. For mapping the low-light image to the enhanced image, pixel-wise higher-order polynomials are employed. A deep convolution network is used to estimate the coefficients of these higher-order polynomials. The proposed network uses multiple branches to estimate pixel values based on different receptive fields. With a smaller receptive field, the first branch enhanced local features, the second and third branches focused on medium-level features, and the last branch enhanced global features. The low-light image is downsampled by the factor of 2b-1 (b is the branch number) and fed as input to each branch. After combining the outputs of each branch, the final enhanced image is obtained. A comprehensive evaluation of our proposed network on six publicly available no-reference test datasets shows that it outperforms state-of-the-art methods on both quantitative and qualitative measures.

Performance Comparison of Korean Dialect Classification Models Based on Acoustic Features

  • Kim, Young Kook;Kim, Myung Ho
    • Journal of the Korea Society of Computer and Information
    • /
    • v.26 no.10
    • /
    • pp.37-43
    • /
    • 2021
  • Using the acoustic features of speech, important social and linguistic information about the speaker can be obtained, and one of the key features is the dialect. A speaker's use of a dialect is a major barrier to interaction with a computer. Dialects can be distinguished at various levels such as phonemes, syllables, words, phrases, and sentences, but it is difficult to distinguish dialects by identifying them one by one. Therefore, in this paper, we propose a lightweight Korean dialect classification model using only MFCC among the features of speech data. We study the optimal method to utilize MFCC features through Korean conversational voice data, and compare the classification performance of five Korean dialects in Gyeonggi/Seoul, Gangwon, Chungcheong, Jeolla, and Gyeongsang in eight machine learning and deep learning classification models. The performance of most classification models was improved by normalizing the MFCC, and the accuracy was improved by 1.07% and F1-score by 2.04% compared to the best performance of the classification model before normalizing the MFCC.

Automatic Detection of Dead Trees Based on Lightweight YOLOv4 and UAV Imagery

  • Yuanhang Jin;Maolin Xu;Jiayuan Zheng
    • Journal of Information Processing Systems
    • /
    • v.19 no.5
    • /
    • pp.614-630
    • /
    • 2023
  • Dead trees significantly impact forest production and the ecological environment and pose constraints to the sustainable development of forests. A lightweight YOLOv4 dead tree detection algorithm based on unmanned aerial vehicle images is proposed to address current limitations in dead tree detection that rely mainly on inefficient, unsafe and easy-to-miss manual inspections. An improved logarithmic transformation method was developed in data pre-processing to display tree features in the shadows. For the model structure, the original CSPDarkNet-53 backbone feature extraction network was replaced by MobileNetV3. Some of the standard convolutional blocks in the original extraction network were replaced by depthwise separable convolution blocks. The new ReLU6 activation function replaced the original LeakyReLU activation function to make the network more robust for low-precision computations. The K-means++ clustering method was also integrated to generate anchor boxes that are more suitable for the dataset. The experimental results show that the improved algorithm achieved an accuracy of 97.33%, higher than other methods. The detection speed of the proposed approach is higher than that of YOLOv4, improving the efficiency and accuracy of the detection process.

Modified YOLOv4S based on Deep learning with Feature Fusion and Spatial Attention (특징 융합과 공간 강조를 적용한 딥러닝 기반의 개선된 YOLOv4S)

  • Hwang, Beom-Yeon;Lee, Sang-Hun;Lee, Seung-Hyun
    • Journal of the Korea Convergence Society
    • /
    • v.12 no.12
    • /
    • pp.31-37
    • /
    • 2021
  • In this paper proposed a feature fusion and spatial attention-based modified YOLOv4S for small and occluded detection. Conventional YOLOv4S is a lightweight network and lacks feature extraction capability compared to the method of the deep network. The proposed method first combines feature maps of different scales with feature fusion to enhance semantic and low-level information. In addition expanding the receptive field with dilated convolution, the detection accuracy for small and occluded objects was improved. Second by improving the conventional spatial information with spatial attention, the detection accuracy of objects classified and occluded between objects was improved. PASCAL VOC and COCO datasets were used for quantitative evaluation of the proposed method. The proposed method improved mAP by 2.7% in the PASCAL VOC dataset and 1.8% in the COCO dataset compared to the Conventional YOLOv4S.

Ensemble Knowledge Distillation for Classification of 14 Thorax Diseases using Chest X-ray Images (흉부 X-선 영상을 이용한 14 가지 흉부 질환 분류를 위한 Ensemble Knowledge Distillation)

  • Ho, Thi Kieu Khanh;Jeon, Younghoon;Gwak, Jeonghwan
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2021.07a
    • /
    • pp.313-315
    • /
    • 2021
  • Timely and accurate diagnosis of lung diseases using Chest X-ray images has been gained much attention from the computer vision and medical imaging communities. Although previous studies have presented the capability of deep convolutional neural networks by achieving competitive binary classification results, their models were seemingly unreliable to effectively distinguish multiple disease groups using a large number of x-ray images. In this paper, we aim to build an advanced approach, so-called Ensemble Knowledge Distillation (EKD), to significantly boost the classification accuracies, compared to traditional KD methods by distilling knowledge from a cumbersome teacher model into an ensemble of lightweight student models with parallel branches trained with ground truth labels. Therefore, learning features at different branches of the student models could enable the network to learn diverse patterns and improve the qualify of final predictions through an ensemble learning solution. Although we observed that experiments on the well-established ChestX-ray14 dataset showed the classification improvements of traditional KD compared to the base transfer learning approach, the EKD performance would be expected to potentially enhance classification accuracy and model generalization, especially in situations of the imbalanced dataset and the interdependency of 14 weakly annotated thorax diseases.

  • PDF

A Study on Lightweight Model with Attention Process for Efficient Object Detection (효율적인 객체 검출을 위해 Attention Process를 적용한 경량화 모델에 대한 연구)

  • Park, Chan-Soo;Lee, Sang-Hun;Han, Hyun-Ho
    • Journal of Digital Convergence
    • /
    • v.19 no.5
    • /
    • pp.307-313
    • /
    • 2021
  • In this paper, a lightweight network with fewer parameters compared to the existing object detection method is proposed. In the case of the currently used detection model, the network complexity has been greatly increased to improve accuracy. Therefore, the proposed network uses EfficientNet as a feature extraction network, and the subsequent layers are formed in a pyramid structure to utilize low-level detailed features and high-level semantic features. An attention process was applied between pyramid structures to suppress unnecessary noise for prediction. All computational processes of the network are replaced by depth-wise and point-wise convolutions to minimize the amount of computation. The proposed network was trained and evaluated using the PASCAL VOC dataset. The features fused through the experiment showed robust properties for various objects through a refinement process. Compared with the CNN-based detection model, detection accuracy is improved with a small amount of computation. It is considered necessary to adjust the anchor ratio according to the size of the object as a future study.