• Title/Summary/Keyword: Lightning Protection Systems

Search Result 67, Processing Time 0.027 seconds

A Novel Method for Measuring the Ground Impedance using Variable Frequency Inverter (가변주파수 인버터를 이용한 접지임피던스의 새로운 측정기법)

  • 이복희;엄주홍
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.53 no.5
    • /
    • pp.253-257
    • /
    • 2004
  • In order to analyze the frequency dependance of ground impedance in grounding grids for lightning and surge protection, a novel method for measuring the ground impedance as a function of frequency were experimentally investigated. The experiments were carried out in rectangular grounding grids with $6{\times}8$ conductors of 22 $mm^2$ buried at a depth of 0.5 m. The test current was injected by the variable frequency inverter whose frequency is linearly controlled for the established period in the range of 5∼500 KHz. The amplitude and phase of ground impedance were calculated from the waveforms of the test current and ground potential rise measured by the band-pass filter tuned in a specific frequency. The frequency dependence of ground impedance was mainly caused by the inductive current flowing through grounding conductors over the frequency of 100 KHz. The proposed measurement method of ground impedance would be applicable to evaluate the transient response characteristics in lightning protection grounding systems.

Frequency Characteristics of Grounding Impedances of the Deeply-driven Ground Rods (심매설 접지전극에 대한 접지임피던스의 주파수특성)

  • Kang, Sung-Man;Kim, Tae-Ki;Kim, Han-Soo;Lee, Bok-Hee
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.1348-1349
    • /
    • 2008
  • Grounding impedance depends on the frequency of current flowing into a grounding system. Especially, the lightning gives a broad frequency spectrum from low frequency up to 1 MHz. So the grounding impedance related to high frequency current like lightning should be measured with high frequency source. In this paper, we described the grounding impedances of deeply-driven ground rods of 10 $\sim$ 48 m long with respect to the frequency of injected currents. For the experiments, we used the wideband power amplifier which can produce sinusoidal voltages with the frequency ranges of DC $\sim$ 250 MHz. As a result, the longer the ground rod is, the lower the ground resistance is. However the grounding impedance of deeply-driven ground rod in the range of higher frequency is significantly increased. As a consequence, it is important to evaluate the high frequency performance of grounding systems for lightning protection.

  • PDF

Frequency Dependence of Grounding Impedances of the Deeply-driven Ground Rods (심매설 접지전극의 접지임피던스의 주파수의존성)

  • Kim, Tae-Ki;Kang, Sung-Man;Lee, Bok-Hee
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2008.05a
    • /
    • pp.70-73
    • /
    • 2008
  • Grounding impedance depends on the frequency of current flowing into a grounding system. Especially, the lightning gives a broad frequency spectrum from low frequency up to 1 MHz. So the grounding impedance related to high frequency current like lightning should be measured with high frequency source. In this paper, we described the grounding impedances of deeply-driven ground rods of 10 ${\sim}$ 48 m long with respect to the frequency of injected currents and the feed point. For the experiments, we used the wideband power amplifier which can produce sinusoidal voltages with the frequency ranges of DC ${\sim}$ 250 MHz. As a result, the longer the ground rod is, the lower the ground resistance is. However the grounding impedance of deeply-driven ground rod in the range of higher frequency is significantly increased. As a consequence, it is important to evaluate the high frequency performance of grounding systems for lightning protection.

  • PDF

Coordination between Voltage-Limiting Surge Protective Devices in Surge Currents Caused by Direct Lightning Flashes

  • Shin, Hee-Kyung;Lee, Jae-Suk
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.29 no.4
    • /
    • pp.116-125
    • /
    • 2015
  • This paper presents experimental results obtained from actual installation conditions of surge protective devices (SPDs), with the aim of understanding the coordination of cascaded Class I and Class II SPDs. This paper also proposes effective methods for selecting and installing coordinating cascaded SPDs. The residual voltage of each SPD and the energy sharing of an upstream Class I tested SPD and a downstream Class II tested SPD were measured using a $10/350{\mu}s$ current wave. In coordinating a cascaded voltage-limiting SPD system, it was found that energy coordination can be achieved as long as the downstream SPD is a metal oxide varistor with a higher maximum continuous operating voltage than the upstream SPD; however, it is not the optimal condition for the voltage protection level. If the varistor voltage of the downstream SPD is equal to or lower than that of the upstream SPD, the precise voltage protection level is obtained. However, this may cause serious problems with regard to energy sharing. The coordination for energy sharing and voltage protection level is fairly achieved when the cascaded SPD system consists of two voltage-limiting SPDs separated by 3 m and with the same varistor voltage.

Lightning Protection System of Solar Power Generation Device (태양광발전장치의 낙뢰보호 시스템)

  • Yongho Yoon
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.23 no.2
    • /
    • pp.157-162
    • /
    • 2023
  • Among the failures of photovoltaic power generation facilities, failures caused by surges account for 20% of the total failure rate, and energy emissions of tens to hundreds [A] during power generation and electrical damage to inverters and connection boards lead to electrical safety accidents. In particular, in the case of lightning, an abnormal voltage is induced in an electric circuit to destroy insulation, and the current flowing at this time causes a fire and acts as a factor that accelerates the deterioration of parts. Due to this action, the problem of electrical safety of solar power generation devices spreading from outside the city center to the inside of the city center such as houses, apartments, and government offices is emerging. Since lightning strikes cause both field-based and conducted electrical interference, this effect increases with increasing cable length or conductor loops. In addition, surge damages not only solar modules, inverters and monitoring devices, but also building facilities, which can eventually cause operational shutdown due to fire of the photovoltaic power generation system and consequent financial loss. Therefore, in this paper, a lightning protection system for solar power generation devices is studied for the purpose of reducing property damage and human casualties due to the increase in fire and electrical safety accidents caused by lightning strikes in photovoltaic power generation systems.

Simulation Method on the Protection Effects of Voltage-Limiting Type SPDs Associated with the Protective Distance (보호거리에 따른 전압제한형 SPD의 보호효과에 대한 시뮬레이션기법)

  • Lee, Bok-Hee;Kim, You-Ha;Ahn, Chang-Hwan
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.27 no.7
    • /
    • pp.89-94
    • /
    • 2013
  • This paper presents a method of simulating the protection effects of surge protective devices(SPDs) depending on the protective distance and types of input impedance of load to be protected. In order to analyze the protective performances of voltage-limiting type SPDs associated with the reflection and oscillation phenomena, the terminal voltage across load being protected and the residual voltage of SPDs were simulated by using EMTP model as functions of the protective distance and types of input impedance of loads. As a consequence, SPDs should be installed by taking into account the protective distance and input impedance of loads to achieve reliable protection of electrical and electronic equipment from lightning and switching surges. It is expected that the simulation method proposed in this paper could be practically used in design for installing SPDs in low-voltage distribution systems.

Design and Behavior of Validating Surge Protective Devices in Extra-low Voltage DC Power Lines (특별저전압 직류 전원회로에 유용한 서지방호장치의 설계와 특성)

  • Shim, Seo-Hyun;Lee, Bok-Hee
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.29 no.3
    • /
    • pp.81-87
    • /
    • 2015
  • In order to effectively protect electrical and electronic circuits which are extremely susceptible to lightning surges, multi-stage surge protection circuits are required. This paper presents the operational characteristics of the two-stage hybrid surge protection circuit in extra-low voltage DC power lines. The hybrid surge protective device consists of the gas discharge tube, transient voltage suppressor, and series inductor. The response characteristics of the proposed hybrid surge protective device to combination waves were investigated. As a result, the proposed two-stage surge protective device to combination wave provides the tight clamping level of less than 50V. The firing of the gas discharge tube to lightning surges depends on the de-coupling inductance and the rate-of-change of the current flowing through the transient voltage suppressor. The coordination between the upstream and downstream components of the hybrid surge protective device was satisfactorily achieved. The inductance of a de-coupler in surge protective circuits for low-voltage DC power lines, relative to a resistance, is sufficiently effective. The voltage drop and power loss due to the proposed surge protective device are ignored during normal operation of the systems.

Simulations of Frequency-dependent Impedance of Ground Rods Considering Multi-layered Soil Structures

  • Lee, Bok-Hee;Joe, Jeong-Hyeon;Choi, Jong-Hyuk
    • Journal of Electrical Engineering and Technology
    • /
    • v.4 no.4
    • /
    • pp.531-537
    • /
    • 2009
  • Lightning has a broad frequency spectrum from DC to a few MHz. Consequently, the high frequency performance of grounding systems for protection against lightning should be evaluated, with the distributed parameter circuit model in a uniform soil being used to simulate grounding impedances. This paper proposes a simulation method which applies the distributed parameter circuit model for the frequency-dependent impedance of vertically driven ground rods by considering multi-layered soil structures where ground rods are buried. The Matlab program was used to calculate the frequency-dependent ground impedances for two ground rods of different lengths. As a result, an increase of the length of ground rod is not always followed by a decrease of grounding impedance, at least at a high frequency. The results obtained using the newly proposed simulation method considering multi-layered soil structures are in good agreement with the measured results.

Transient Impedance Characteristics of Mesh Grounding System under Impulse Current (임펄스 전류에 대한 메쉬접지계의 과도임피던스 특성)

  • Lee, Bok-Hee;Park, Jhong-Soon
    • Proceedings of the KIEE Conference
    • /
    • 1997.11a
    • /
    • pp.361-363
    • /
    • 1997
  • Electronic devices are very weak against lightning surges injected from grounding systems and can be damaged. The malfunction and damage of electronic circuits bring about several disadvantages such as low operation performances, a lot of economical losses, and etc. In order to obtain the effective protection measure of electronic devices from overvoltages and lightning surges, the analysis of the transient grounding impedances is very important. The aim of this work is to evaluate the behaviors of transient grounding impedances under impulse currents and to investigate the effect of grounding lead wire. Z-t, Z-i and V-i curves of transient grounding impedance under impulse current waveforms have been measured and analyzed.

  • PDF

Empirical Performance Test of SPDs used in Communication Networks (통신용 SPD 성능평가를 위한 실증시험)

  • Lee, Tae-Hyung;Cho, Sung-Chul;Eom, Ju-Hong
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.1464-1465
    • /
    • 2007
  • The purpose of this paper is to identify the requirements for Surge Protective Devices (SPDs) used in protecting telecommunication and signalling system. All of these systems may be exposed to the effects of lightning and power line faults, either through direct contact or induction. These effects may subject the system to overvoltages or overcurrents or both, whose levels are sufficiently high to harm the system. SPDs are intended to provide protection against overvoltages and overcurrents caused by lightning and power line faults. This paper describes tests and requirements which establish methods for testing SPDs and determining their performance.

  • PDF