• Title/Summary/Keyword: Lightning Protection Measures

Search Result 14, Processing Time 0.02 seconds

The Lightning Effects on Aircraft and Certification (항공기에 대한 낙뢰의 영향과 감항성 인증)

  • Han,Sang-Ho;Lee,Jong-Hui
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.31 no.9
    • /
    • pp.110-120
    • /
    • 2003
  • As the wooden aircraft in the early times has no way to let lightning flow when lighting flash attaches during flight, the aircraft got damage, or caught fire. Though all metal airplane was developed with an advent of aluminum, a lightning accident still occurred including a fire of a fuel tanks. Eventually, NACA declared problems in 1938, and an artificial lightning test began. III succession, FAA established Airworthiness Requirements for certification. The FAA committed test measures study for the protection of an airplane from lightning to SAE. SAE presented the test current and voltage waveforms that simulating natural lightning, and it is utilized on lightning protection certification of an airplane by public. A lightning effects of an airplane through an analysis of lightning mechanism was made in this technical note. Especially, lightning direct effects on aircraft are analyzed and lightning strike zones are described.

Protection Effects Associated with the Conditions for the Installations of SPDs (SPD의 설치조건이 보호효과에 미치는 영향)

  • Lee, Bok-Hee;Lee, Dong-Moon;Lee, Seung-Chil
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.20 no.2
    • /
    • pp.60-67
    • /
    • 2006
  • This paper presents the protection effect of surge protective devices(SPDs) according to the conditions of installations. To propose the effective protection measures of information and communication equipments against lightning surges, actual-sized experiments in relation to the protection effects on the positions of installations of SPDs, the length of branch circuit, the wiring methods, and the materials of conduit, were conducted. The effective method of protecting information and communication equipments from lightning surges is to install SPDs in the vicinity of input terminals of each electronic equipments to be protected. The wiring method of connecting an SPD minimizing the length of leads is desirable when point-to-point wiring is to be used.

A Study on the Analysis and Protection of Lightning Accident in Petrochemical Plant Wastewater Storage Tank (석유화학공장 폐수 저장 탱크의 낙뢰사고 분석과 보호방안에 관한 연구)

  • Song, Bang-Un;Oh, Gil-Jung;Woo, In-Sung
    • Fire Science and Engineering
    • /
    • v.33 no.2
    • /
    • pp.107-113
    • /
    • 2019
  • Recently, due to global warming, the trend shows an increase in number of lightning strikes which increase risk regarding industry infrastructures. Especially in case where the lightning strikes infrastructures including refinery, petorchemical plant facilities or storage tanks, it can cause power failures, electrical machine malfunction and damage which can lead to fire explosion and multiple calamities. Therefore, detailed case studies must be conducted through a systematic research regarding lightning strike accidents in order to understand its mechanism and devise preventive measures. This paper aims to study cases of explosion regarding waste water storage tanks in refineries and petrochemical plants in order to analyze its root cause and provide preventive measures for avoiding lightning related incidents.

Validation of Some Protection Guidelines for Neighboring Pipelines against Fault Currents from Power Transmission Tower

  • Lee, Seong-Min;Song, Hong-Seok;Kim, Young Geun
    • Corrosion Science and Technology
    • /
    • v.6 no.2
    • /
    • pp.77-81
    • /
    • 2007
  • Fault current can be discharged from power transmission tower due to lightning or inadvertent contact of crane, etc. Pipelines in proximity to either the source of the ground fault or the substation grounding grid may provide convenient conductive path for the fault current to travel. Inappropriate measures to the neighboring pipelines against the fault current may cause severe damages to the pipes such as coating breakdown, arc burn, puncture, loss in wall thickness, or brittle heat-affected zone. Like inductive and conductive AC coupling, steadily induced fault current right after the coating breakdown can lead to corrosion of the pipeline. In this work, some protection guidelines against fault currents used in the field have been validated through the simulation and analytical method.